
REPORT

The Enterprise
Path to
Service Mesh
Architectures
Second Edition

Decoupling at Layer 5

Lee Calcote

The Enterprise
Path to
Service Mesh
Architectures
Second Edition

Decoupling at Layer 5

Lee Calcote

Compliments of

Lorem
ipsum dolor
sit amet,

Try Layer5 MeshMap

bringing GitOps to service meshes as the world’s only
service mesh designer

Try at layer5.io/meshmap

expect more from your infrastructure

Lee Calcote

The Enterprise Path to
Service Mesh Architectures

Decoupling at Layer 5

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08933-9

[LSI]

The Enterprise Path to Service Mesh Architectures
by Lee Calcote

Copyright © 2021 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Gary O’Brien
Production Editor: Deborah Baker
Copyeditor: Piper Editorial, LLC

Proofreader: Abby Wheeler
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2018: First Edition
November 2020: Second Edition

Revision History for the Second Edition
2020-11-09: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. !e Enterprise
Path to Service Mesh Architectures, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. Service Mesh Fundamentals. 1
Operating Many Services 1
What Is a Service Mesh? 2
Why Do I Need One? 10
Conclusion 21

2. Contrasting Technologies. 23
Client Libraries 23
API Gateways 26
Container Orchestrators 29
Service Meshes 30
Conclusion 37

3. Adoption and Evolutionary Architectures. 39
Piecemeal Adoption 39
Practical Steps to Adoption 40
Retrofitting a Deployment 43
Evolutionary Architectures 43
Conclusion 56

4. Customization and Integration. 57
The Power of the Data Plane 58
Swappable Sidecars 62
Extensible Adapters 66

iii

The Performance of the Data Plane 68
Conclusion 69

5. Conclusion. 71
Adopting a Service Mesh 73

iv | Table of Contents

Preface

As someone interested in modern software design, you have heard
of service mesh architectures primarily in the context of microservi‐
ces. Service meshes are being layered into modern infrastructures
ubiquitously, offering the ability to create and run robust and resil‐
ient applications while exercising granular control over them. Is a
service mesh right for you? This report will help answer common
questions on service mesh architectures through the lens of a large
enterprise. It also addresses how to evaluate your organization’s
readiness for a service mesh, provides factors to consider when
building new applications and converting existing applications to
best take advantage of a service mesh, and offers insight on deploy‐
ment architectures used to get you there.

What You Will Learn
In this report, we’ll discuss answers to the following questions:

• What is a service mesh, and why do I need one?
— What are the different service meshes, and how do they

contrast?
• Where do services meshes layer in with other technologies?
• When should I adopt a service mesh?

— What are popular deployment models and why?
— What are practical steps for adopting a service mesh in my

enterprise?
— How do I fit a service mesh into my existing infrastructure?

v

Who This Report Is For
The intended readers are developers, operators, architects, and
infrastructure (IT) leaders who are faced with operational challenges
of distributed systems. Technologists need to understand the various
capabilities of and paths to service meshes so that they can make an
informed decision about selecting and investing in an architecture
and deployment model. This will allow them to provide visibility,
resiliency, traffic, and security control of their distributed applica‐
tion services.

Acknowledgments
Many thanks to Matt Turner, Ronald Petty, Karthik Gaekwad, Alex
Blewitt, Dr. Girish Ranganathan (Dr. G), and the occasional two t’s
Matt Baldwin for their many efforts to ensure the technical correct‐
ness of this report.

vi | Preface

CHAPTER 1

Service Mesh Fundamentals

Why is operating microservices difficult? What is a service mesh,
and why do I need one?

Many emergent technologies build on or reincarnate prior thinking
and approaches to computing and networking paradigms. Why is
this phenomenon necessary? In the case of service meshes, we’ll
look to the microservices and containers movement—the cloud-
native approach to designing scalable, independently delivered serv‐
ices as a catalyst. Microservices have exploded what were once
internal application communications into a mesh of service-to-
service remote procedure calls (RPCs) transported over networks.
Bearing many benefits, microservices provide democratization of
language and technology choice across independent service teams
that create new features quickly as they iteratively and continuously
deliver software (typically as a service). The decoupling of engineer‐
ing teams and their increased speed is the most significant driver of
microservices as an architectural model.

Operating Many Services
And, sure, the first couple of microservices are relatively easy to
deliver and operate—at least compared to what difficulties organiza‐
tions face the day they arrive at many microservices. Whether that
“many” is 3 or 100, the onset of a major technology challenge is
inevitable. Different medicines are dispensed to alleviate microservi‐
ces headaches; the use of client libraries is one notable example.
Language- and framework-specific client libraries, whether

1

preexisting or created, are used to address distributed systems chal‐
lenges in microservices environments. It’s in these environments
that many teams first consider their path to a service mesh. The
sheer volume of services that must be managed on an individual,
distributed basis (versus centrally as with monoliths) and the chal‐
lenges of ensuring reliability, observability, and security of these
services cannot be overcome with outmoded paradigms, hence the
need to reincarnate prior thinking and approaches. New tools and
techniques must be adopted.

Given the distributed (and often ephemeral) nature of microservi‐
ces, and how central the network is to their functioning, it behooves
us to reflect on the fallacies that networks are reliable, are without
latency, and have infinite bandwidth and that communication is
guaranteed (it’s worth reflecting on the fact that these same assump‐
tions are held for service components using internal function calls).
When you consider how critical the ability to control and secure
service communication is to distributed systems that rely on net‐
work calls with every transaction every time an application is
invoked, you begin to understand that you are under-tooled and see
why running more than a few microservices on a network topology
that is in constant flux is so difficult. In the age of microservices, a
new layer of tooling for the caretaking of services is needed—a ser‐
vice mesh is needed.

What Is a Service Mesh?
Service meshes provide intent-based networking for microservices
describing the desired behavior of the network in the face of con‐
stantly changing conditions and network topology. At their core,
service meshes provide:

• A services-first network
• A developer-driven network
• A network that is primarily concerned with removing the need

for developers to build infrastructure concerns into their appli‐
cation code

• A network that empowers operators with the ability to declara‐
tively define network behavior, node identity, and traffic flow
through policy

2 | Chapter 1: Service Mesh Fundamentals

• A network that enables service owners to control application
logic without engaging developers to change its code

• Value derived from the layer of tooling that service meshes pro‐
vide is most evident in the land of microservices

The more services, the more value derived from the mesh. In subse‐
quent chapters, I show how service meshes provide value outside of
the use of microservices and containers and help modernize existing
services (running on virtual or bare-metal servers) as well.

Architecture and Components
Although there are a few variants, service mesh architectures com‐
monly comprise three planes: a management plane, a control plane,
and a data plane. The concept of these three planes immediately res‐
onates with network engineers by the analogous way physical net‐
works (and their equipment) are designed and managed. Network
engineers have long been trained on divisions of concern by planes,
as shown in Figure 1-1.

Figure 1-1. Physical networking versus so"ware-de#ned networking
planes

Network engineers also receive training in the OSI model. The OSI
model is shown in Figure 1-2, as a refresher for those who have not
seen it in some time. We will refer to various layers of this model
throughout the book.

What Is a Service Mesh? | 3

Figure 1-2. Seven-Layer OSI model (source: Wikipedia)

Let’s contrast physical networking planes and network topologies
with those of service meshes.

Physical network planes
The physical network data plane (also known as the forwarding
plane) contains application traffic generated by hosts, clients,
servers, and applications that use the network as transport. Thus,
data plane traffic should never have source or destination IP
addresses that belong to any network elements such as routers and
switches; rather, they should be sourced from and delivered to end
devices such as PCs and servers. Routers and switches use hardware
chips—application-specific integrated circuits (ASICs)—to forward
data plane traffic as quickly as possible. The physical networking
data plane references a forwarding information base (FIB). A for‐
warding information base is a simple, dynamic table that maps a
media access control address (MAC address) to a physical network
port to transit traffic at wire speed (using ASICs) to the next device.

The physical networking control plane operates as the logical entity
associated with router processes and functions used to create and

4 | Chapter 1: Service Mesh Fundamentals

https://oreil.ly/cU0AW

maintain necessary intelligence about the state of the network (top‐
ology) and a router’s interfaces. The control plane includes network
protocols, such as routing, signaling, and link-state protocols that
are used to build and maintain the operational state of the network
and provide IP connectivity between IP hosts. Physical network
control planes operate in-band of network traffic, leaving them sus‐
ceptible to denial-of-service (DoS) attacks that either directly or
indirectly result in:

• Exhaustion of memory and/or buffer resources
• Loss of routing protocol updates and keepalives
• Slow or blocked access to interactive management sessions
• High CPU utilization
• Routing instability, interrupted network reachability, or incon‐

sistent packet delivery

The physical networking management plane is the logical entity that
describes the traffic used to access, manage, and monitor all of the
network elements commonly using protocols like SNMP, SSH,
HTTPS, and, heaven forbid, Telnet. The management plane sup‐
ports all required provisioning, maintenance, and monitoring func‐
tions for the network. Although network traffic in the control plane
is handled in-band with all other data plane traffic, management
plane traffic is capable of being carried via a separate out-of-band
(OOB) management network to provide separate reachability in the
event that the primary in-band IP path is not available. Separation of
the management path from the data path has the desired effect of
creating a security boundary. Restricting management plane access
to devices on trusted networks is critical.

Physical networking control and data planes are tightly coupled and
generally vendor-provided as a proprietary integration of hardware
and firmware. Software-defined networking (SDN) has done much
to standardize and decouple. Open vSwitch and OpenDaylight are
two examples of SDN projects. We’ll see that control and data planes
of service meshes are not necessarily tightly coupled.

What Is a Service Mesh? | 5

Physical network topologies
Common physical networking topologies include star, spoke-and-
hub, tree (also called hierarchical), and mesh. As depicted in
Figure 1-3, nodes in mesh networks connect directly and nonhier‐
archically such that each node is connected to an arbitrary number
(usually as many as possible or as needed dynamically) of neighbor
nodes so that there is at least one path from a given node to any
other node to efficiently route data.

When I designed mesh networks as an engineer at Cisco, I did so to
create fully interconnected, wireless networks. Wireless is the can‐
onical use case for physical mesh networks when the networking
medium is readily susceptible to line-of-sight, weather-induced, or
other disruption, and, therefore, when reliability is of paramount
concern. Mesh networks generally self-configure, enabling dynamic
distribution of workloads. This ability is particularly key to both
mitigate risk of failure (improve resiliency) and to react to continu‐
ously changing topologies. It’s readily apparent why this network
topology, shown in Figure 1-3, is the design of choice for service
mesh architectures.

Figure 1-3. Mesh topology—fully connected network nodes

Service mesh network planes
Service mesh architectures typically employ the same three net‐
working planes: data, control, and management (see Figure 1-4).

6 | Chapter 1: Service Mesh Fundamentals

Figure 1-4. An example of service mesh architecture. In Linkerd’s
architecture, control and data planes divide in-band and out-of-band
responsibility for service tra$c.

A service mesh data plane (otherwise known as the proxying layer)
intercepts every packet in the request and is responsible for health
checking, routing, load balancing, authentication, authorization, and
generation of observable signals. Service proxies are transparently
inserted, and as applications make service-to-service calls, applica‐
tions are unaware of the data plane’s existence. Data planes are
responsible for intraservice communication as well as inbound
(ingress) and outbound (egress) service mesh traffic. Whether traffic
is entering the mesh (ingressing) or leaving the mesh (egressing),
application service traffic is directed first to the service proxy for
handling prior to sending (or not sending) along to the application.
To redirect traffic from the service proxy to the service application,
traffic is transparently intercepted and redirected to the service
proxy. The interception and redirection of traffic between the ser‐
vice proxy and service application places the service application’s

What Is a Service Mesh? | 7

container onto a network it would otherwise not be on. The service
proxy sees all traffic to and from the service application (with small
exception, this is the case in most service mesh architectures). Ser‐
vice proxies are the building blocks of service mesh data planes.

Tra!c Interception and Redirection

Service meshes vary in the technology used to inter‐
cept and redirect traffic. Some meshes are flexible as to
whether a given deployment uses iptables, IPVS, or
eBPF as the technology to transparently proxy requests
between clients and service applications. Less transpar‐
ently, other service mesh proxies simply require that
application traffic be configured to direct their traffic
to the proxy. The choice between each of these tech‐
nologies affects the speed in which packets are pro‐
cessed and places environmental constraints on the
type and kernel version of the operating system used
for the service mesh deployment.

Envoy is an example of a popular proxy used in service mesh data
planes. It is also often deployed more simply standalone as a load
balancer or ingress gateway. The proxies used in service mesh data
planes are highly intelligent and may incorporate any number of
protocol-specific filters to manipulate network packets (including
application-level data). With technology advances like WebAssem‐
bly, extending data plane capabilities means that service meshes are
capable of injecting new logic into requests while simultaneously
handling high traffic load.

A service mesh control plane is called for when the number of prox‐
ies becomes unwieldy or when a single point of visibility and control
is required. Control planes provide policy and configuration for
services in the mesh, taking a set of isolated, stateless proxies and
turning them into a service mesh. Control planes do not directly
touch any network packets in the mesh; they operate out-of-band.
Control planes typically have a command-line interface (CLI)
and/or a user interface for you to interact with the mesh. Each of
these commonly provides access to a centralized API for holistically
controlling proxy behavior. You can automate changes to the control
plane configuration through its APIs (e.g., by a continuous integra‐
tion/continuous deployment [CI/CD] pipeline), where, in practice,
configuration is most often version controlled and updated.

8 | Chapter 1: Service Mesh Fundamentals

Proxies are not regarded as the source of truth for the
state of the mesh. Proxies are generally informed by
the control plane of the presence of services, mesh top‐
ology updates, traffic and authorization policy, and so
on. Proxies cache the state of the mesh but are gener‐
ally considered stateless.

Linkerd (pronounced “linker-dee”) and Istio (pronounced “Ist-tee-
oh”), two popular, open source service meshes, provide examples of
how the data and control planes are packaged and deployed. In
terms of packaging, Linkerd v1 contains both its proxying compo‐
nents (linkerd) and its control plane (Namerd) packaged together
simply as “Linkerd,” and Istio brings a collection of control plane
components (Galley, Pilot, and Citadel) to pair by default with
Envoy (a data plane) packaged together as “Istio.” Envoy is often
labeled a service mesh, but inappropriately so, because it takes pack‐
aging with a control plane to form a service mesh.

A service mesh management plane is a higher-order level of control,
as shown in Figure 1-5. A management plane may provide a variety
of functions. As such, implementations vary in their functionality,
some focusing on orchestrating service meshes (e.g., service mesh
life-cycle management) and mesh federation, providing insight
across a collection of diverse meshes. Some management planes
focus on integrating service meshes with business process and pol‐
icy, including governance, compliance, validation of configuration,
and extensible access control.

In terms of deployments of these planes, data planes, like that of
Linkerd v2, have proxies that are created as part of the project and
are not designed to be configured by hand but are instead designed
so their behavior will be entirely driven by the control plane. Other
service meshes, like Istio, choose not to develop their own proxy;
instead, they ingest and use independent proxies (separate projects),
which, as a result, facilitates choice of proxy and its deployment out‐
side of the mesh (standalone). In terms of control plane deployment,
using Kubernetes as the example infrastructure, control planes are
typically deployed in a separate “system” namespace. Management
planes are deployed both on and off cluster, depending on how
deeply they integrate with noncontainerized workloads and a busi‐
ness’s backend systems.

What Is a Service Mesh? | 9

Figure 1-5. Architecture of Meshery, the service mesh management
plane

Why Do I Need One?
At this point, you might be thinking, “I have a container orchestra‐
tor. Why do I need another infrastructure layer?” With microservi‐
ces and containers mainstreaming, container orchestrators provide
much of what the cluster (nodes and containers) need. Necessarily
so, the core focus of container orchestrators is scheduling, discovery,
and health, focused primarily at an infrastructure level (networking
being a Layer 4 and below focus). Consequently, microservices are
left with unmet, service-level needs. A service mesh is a dedicated
infrastructure layer for making service-to-service communication
safe, fast, and reliable, often relying on a container orchestrator or
integration with another service discovery system for operation. Ser‐
vice meshes often deploy as a separate layer atop container orches‐
trators, but they do not require one because control and data plane
components may be deployed independent of containerized infra‐
structure. As you’ll see in Chapter 3, a node agent (including service

10 | Chapter 1: Service Mesh Fundamentals

proxy) as the data plane component is often deployed in noncon‐
tainer environments.

As noted, in microservices deployments, the network is directly and
critically involved in every transaction, every invocation of business
logic, and every request made to the application. Network reliability
and latency are at the forefront of concerns for modern, cloud-
native applications. A given cloud-native application might be com‐
posed of hundreds of microservices, each of which might have many
instances, and each of those ephemeral instances may be resched‐
uled as necessary by a container orchestrator.

Understanding the network’s criticality, what would you want out of
a network that connects your microservices? You want your net‐
work to be as intelligent and resilient as possible. You want your net‐
work to route traffic around from failures to increase the aggregate
reliability of your cluster. You want your network to avoid unwanted
overhead like high-latency routes or servers with cold caches. You
want your network to ensure that the traffic flowing between serv‐
ices is secure against trivial attacks. You want your network to pro‐
vide insight by highlighting unexpected dependencies and root
causes of service communication failure. You want your network to
let you impose policies at the granularity of service behaviors, not
just at the connection level. And, you don’t want to write all of this
logic into your application.

You want Layer 5 management. You want a services-first network.
You want a service mesh.

Value of a Service Mesh
Service meshes provide visibility, resiliency, traffic, and security con‐
trol of distributed application services. Much value is promised here,
particularly to the extent that much is given without the need to
change your application code (or much of it, depending).

Observability
Many organizations are initially attracted to the uniform observabil‐
ity that service meshes provide. No complex system is ever fully
healthy. Service-level telemetry illuminates where your system is
behaving sickly, illuminating difficult-to-answer questions like why
your requests are slow to respond. Identifying when a specific

Why Do I Need One? | 11

service is down is relatively easy, but identifying where it’s slow and
why is another matter.

From the application’s vantage point, service meshes provide opaque
monitoring of service-to-service communication (observing metrics
and logs external to the application) and code-level monitoring
(offering observable signals from within the application). Some ser‐
vice meshes work in combination with a distributed tracing library
to deliver code-level monitoring, while other service meshes enable
a deeper level of visibility through protocol-specific filters as a capa‐
bility of their proxies. Comprising the data plane, proxies are well-
positioned (transparently, in-band) to generate metrics, logs, and
traces, providing uniform and thorough observability throughout
the mesh as a whole, as seen in Figure 1-6.

Figure 1-6. Among other things, a service mesh is an accounting
machine. Service meshes can collect multiple telemetric signals and
send them for monitoring and facilitating decisions such as those deal‐
ing with authorization and quota management.

12 | Chapter 1: Service Mesh Fundamentals

You are probably accustomed to having individual monitoring solu‐
tions for distributed tracing, logging, security, access control, and so
on. Service meshes centralize and assist in solving these observabil‐
ity challenges by providing the following:

Logging
Logs are used to baseline visibility for access requests to your
entire fleet of services. Figure 1-6 illustrates how telemetry
transmitted through service mesh logs includes source and des‐
tination, request protocol, endpoint (URL), associated response
code, and response time and size.

Metrics
Metrics are used to remove dependency and reliance on the
development process to instrument code to emit metrics. When
metrics are ubiquitous across your cluster, they unlock new
insights. Consistent metrics enable automation for things like
autoscaling, as an example. Example telemetry emitted by ser‐
vice mesh metrics includes global request volume, global suc‐
cess rate, individual service responses by version, and source
and time, as shown in Figure 1-7.

Figure 1-7. Request metrics generated by Istio and visible in Meshery

Why Do I Need One? | 13

Tracing
Without tracing, slow services (versus services that simply fail)
are difficult to debug. Imagine tracking manual enumeration of
all of your service dependencies in a spreadsheet. Traces are
used to visualize dependencies, request volumes, and failure
rates. With automatically generated span identifiers, service
meshes make integrating tracing functionality almost effortless.
Individual services in the mesh still need to forward context
headers, but that’s it. In contrast, many application performance
management (APM) solutions require manual instrumentation
to get traces out of your services. Later, you’ll see that in the
sidecar proxy deployment model, sidecars are ideally positioned
to trace the flow of requests across services.

Tra!c control
Service meshes provide granular, declarative control over network
traffic to determine where a request is routed to perform canary
release, for example. Resiliency features typically include circuit
breaking, latency-aware load balancing, eventually consistent service
discovery, timeouts, deadlines, and retries.

Timeouts provide cancellation of service requests when a request
doesn’t return to the client within a predefined time. Timeouts limit
the amount of time spent on any individual request and are
enforced at a point in time when a response is considered invalid or
too long for a client (user) to wait. Deadlines are an advanced service
mesh feature in that they facilitate the feature-level timeouts (a col‐
lection of requests) rather than independent service timeouts, help‐
ing to avoid retry storms. Deadlines deduct time left to handle a
request at each step, propagating elapsed time with each down‐
stream service call as the request travels through the mesh. Time‐
outs and deadlines, illustrated in Figure 1-8, can be considered as
enforcers of your service-level objectives (SLOs).

When a service times out or is unsuccessfully returned, you might
choose to retry the request. Simple retries bear the risk of making
things worse by retrying the same call to a service that is already
under water (retry three times = 300% more service load). Retry
budgets (aka maximum retries), however, provide the benefit of mul‐
tiple tries but with a limit, so as to not overload what is already a
load-challenged service. Some service meshes take the elimination

14 | Chapter 1: Service Mesh Fundamentals

of client contention further by introducing jitter and an exponential
back-off algorithm into the calculation of timing the next retry
attempt.

Figure 1-8. Deadlines, not ubiquitously supported by di%erent service
meshes, set feature-level timeouts

Instead of retrying and adding more load to the service, you might
elect to fail fast and disconnect the service, disallowing calls to it.
Circuit breaking provides configurable timeouts (or failure thresh‐
olds) to ensure safe maximums and facilitate graceful failure, com‐
monly for slow-responding services. Using a service mesh as a
separate layer to implement circuit breaking will avoid excessive
overhead on applications (services) at a time when they are already
oversubscribed.

Rate limiting (throttling) is used to ensure stability of a service so
that when one client causes a spike in requests, the service continues
to run smoothly for other clients. Rate limits are usually measured
over a period of time, but you can use different algorithms (fixed or
sliding window, sliding log, etc.). Rate limits are typically operation‐
ally focused on ensuring that your services aren’t oversubscribed.

Why Do I Need One? | 15

When a limit is reached, well-implemented services commonly
adhere to IETF RFC 6585, sending 429 Too Many Requests as the
response code, including headers, such as the following, describing
the request limit, number of requests remaining, and amount of
time remaining until the request counter is reset:

X-RateLimit-Limit: 60
X-RateLimit-Remaining: 0
X-RateLimit-Reset: 1372016266

Rate limiting protects your services from overuse by limiting how
often a client (most often identified by a user access token) can call
your service(s), and provides operational resiliency (e.g., service A
can handle only 500 requests per second).

A slightly different approach is quota management (or conditional
rate limiting), which is primarily used for accounting of requests
based on business requirements as opposed to limiting rates based
on operational concerns. It can be difficult to distinguish between
rate limiting and quota management, given that these two features
can be implemented by the same service mesh capability but presen‐
ted differently to users.

The canonical example of a quota management is to configure a pol‐
icy setting a threshold for the number of client requests allowed to a
service over the course of time, like user Lee is subscribed to the free
service plan and allowed only 10 requests per day. Quota policy
enforces consumption limits on services by maintaining a dis‐
tributed counter that tallies incoming requests, often using an in-
memory datastore like Redis. Conditional rate limits are a powerful
service mesh capability when implemented based on a user-defined
set of arbitrary attributes.

Conditional Rate Limiting Example:
Implementing Class of Service

In this example, let’s consider a “temperature-check” service that
provides a readout of the current temperature for a given geo‐
graphic area, updated on one-minute intervals. The service pro‐
vides two different experiences to clients when interacting with its
API: an authenticated but unentitled (free account) experience and
an entitled (paying account) experience, like so:

16 | Chapter 1: Service Mesh Fundamentals

• If the request on the temperature-check service is unauthenti‐
cated, the service limits responses to a given requester (client)
to one request every 600 seconds. Any unauthenticated user is
restricted to receiving an updated result at 10-minute intervals
to spare the temperature-check service’s resources and provide
paying users with a premium experience.

• Authenticated users (perhaps those providing a valid authenti‐
cation token in the request) are those who have active service
subscriptions (paying customers) and therefore are entitled to
up-to-the-minute updates on the temperature-check-service’s
data (authenticated requests to the temperature-check service
are not rate limited).

In this example, through conditional rate limiting, the service mesh
is providing a separate class of service to paying and nonpaying cli‐
ents of the temperature-check service. There are many ways class of
service can be provided by the service mesh (e.g., authenticated
requests are sent to a separate service, “temperature-check-
premium”). Generally expressed as rules within a collection of poli‐
cies, traffic control behavior is defined in the control plane and
disseminated as configuration to the data plane. The order of oper‐
ations for rule evaluation is specific to each service mesh, but it is
often evaluated from top to bottom.

Security
Most service meshes provide a certificate authority to manage keys
and certificates for securing service-to-service communication. Cer‐
tificates are generated per service and provide a unique identity of
that service. When sidecar proxies are used (discussed later in Chap‐
ter 3), they take on the identity of the service and perform life-cycle
management of certificates (generation, distribution, refresh, and
revocation) on behalf of the service. In sidecar proxy deployments,
you’ll typically find that local TCP connections are established
between the service and sidecar proxy, whereas mutual Transport
Layer Security (mTLS) connections are established between proxies,
as demonstrated in Figure 1-9.

Encrypting traffic internal to your application is an important secu‐
rity consideration. Your application’s service calls are no longer kept
inside a single monolith via localhost; they are exposed over the net‐
work. Allowing service calls without TLS on the transport is setting

Why Do I Need One? | 17

yourself up for security problems. When two mesh-enabled services
communicate, they have strong cryptographic proof of their peers.
After identities are established, they are used in constructing access-
control policies, determining whether a request should be serviced.
Depending on the service mesh used, policy controls configuration
of the key management system (e.g., certificate refresh interval) and
operational access control are used to determine whether a request
is accepted. Allow and blocklist are used to identify approved and
unapproved connection requests as well as more granular access-
control factors like time of day.

Figure 1-9. An example of service mesh architecture

Delay and fault injection
The notion that your networks and/or systems will fail must be
embraced. Why not preemptively inject failure and verify behavior?
Given that proxies sit in line to service traffic, they often support
protocol-specific fault injection, allowing configuration of the per‐
centage of requests that should be subjected to faults or network
delay. For instance, generating HTTP 500 errors helps to verify the

18 | Chapter 1: Service Mesh Fundamentals

robustness of your distributed application in terms of how it
behaves in response.

Injecting latency into requests without a service mesh can be a tedi‐
ous task but is probably a more common issue faced during opera‐
tion of an application. Slow responses that result in an HTTP 503
after a minute of waiting leave users much more frustrated than a
503 after a few seconds. Arguably, the best part of these resilience
testing capabilities is that no application code needs to change in
order to facilitate these tests. Results of the tests, on the other hand,
might well have you changing application code.

Using a service mesh, developers invest much less in writing code to
deal with infrastructure concerns—code that might be on a path to
being commoditized by service meshes. The separation of service
and session-layer concerns from application code manifests in the
form of a phenomenon I refer to as a decoupling at Layer 5.

Decoupling at Layer 5
Service meshes help you avoid bloated service code, fat on infra‐
structure concerns.

You can avoid duplicative work in making services production-
ready by singularly addressing load balancing, autoscaling, rate lim‐
iting, traffic routing, and so on. Teams avoid inconsistency of
implementation across different services to the extent that the same
set of central control is provided for retries and budgets, failover,
deadlines, cancellation, and so forth. Implementations done in silos
lead to fragmented, nonuniform policy application and difficult
debugging.

Service meshes insert a dedicated infrastructure layer between Dev
and Ops, separating what are common concerns of service commu‐
nication by providing independent control over them. The service
mesh is a networking model that sits at a layer of abstraction above
TCP/IP. Without a service mesh, operators are still tied to develop‐
ers for many concerns as they need new application builds to con‐
trol network traffic, change authorization behavior, implement
resiliency, and so on. The decoupling of Dev and Ops is key to pro‐
viding autonomous independent iteration.

Decoupling is an important trend in the industry. If you have a sig‐
nificant number of services, you have at least these three roles:

Why Do I Need One? | 19

developers, operators, and service owners (product owners). Just as
microservices are a trend in the industry for allowing teams to inde‐
pendently iterate, so do service meshes allow teams to decouple and
iterate faster. Technical reasons for having to coordinate between
teams dissolve in many circumstances, like the following short list of
examples:

• Operators don’t necessarily need to involve developers to
change how many times a service should retry before timing out
or to run experiments (known as chaos engineering). They are
empowered to affect service behavior independently.

• Customer success (support) teams can handle the revocation of
client access without involving operators.

• Product owners can use quota management to enforce price
plan limitations for quantity-based consumption of particular
services.

• Developers can redirect their internal stakeholders to a canary
with beta functionality without involving operators.

• Security engineers can declaratively define authentication and
authorization policies, enforced by the service mesh.

• Network engineers are empowered with an extraordinarily high
degree of application-level control formerly unavailable to
them.

Microservices decouple functional responsibilities within an appli‐
cation from each other, allowing development teams to independ‐
ently iterate and move forward. Figure 1-10 shows that in the same
fashion, service meshes decouple functional responsibilities of
instrumentation and operating services from developers and opera‐
tors, providing an independent point of control and centralization
of responsibility.

Even though service meshes facilitate a separation of concerns, both
developers and operators should understand the details of the mesh.
The more everyone understands, the better. Operators can obtain
uniform metrics and traces from running applications involving
diverse language frameworks without relying on developers to man‐
ually instrument their applications. Developers tend to consider the
network as a dumb transport layer that really doesn’t help with
service-level concerns. We need a network that operates at the same
level as the services we build and deploy. Because service meshes are

20 | Chapter 1: Service Mesh Fundamentals

capable of deep packet inspection and mutation at the application
level, service owners are empowered to bypass developers and affect
business-level logic behavior without code change.

Figure 1-10. Decoupling as a way of increasing velocity

Essentially, you can think of a service mesh as surfacing the session
layer of the OSI model as a separately addressable, first-class citizen
in your modern architecture. As a highly configurable workhorse,
the service mesh is the secret weapon of cloud-native architectures,
waiting to be exploited.

Conclusion
The data plane carries the actual application request traffic between
service instances. The control plane configures the data plane, pro‐
vides a point of aggregation for telemetry, and also provides APIs for
modifying the mesh’s behavior. The management plane extends gov‐
ernance and backend systems integration and further empowers
personas other than strictly operators while also significantly bene‐
fitting developers and product/service owners.

Decoupling of Dev and Ops avoids diffusion of the responsibility of
service management, centralizing control over these concerns in a
new infrastructure layer: Layer 5.

Service meshes make it possible for services to regain a consistent,
secure way to establish identity within a datacenter and, further‐
more, do so based on strong cryptographic primitives rather than
deployment topology.

With each deployment of a service mesh, developers are relieved of
their infrastructure concerns and can refocus on their primary task
(creating business logic). More-seasoned software engineers might
have difficulty breaking the habit and trusting that the service mesh

Conclusion | 21

will provide, or even displacing the psychological dependency on
their client libraries.

Many organizations find themselves in the situation of having incor‐
porated too many infrastructure concerns into application code.
Service meshes are a necessary building block when composing
production-grade microservices. The power of easily deployable ser‐
vice meshes will allow for many smaller organizations to enjoy fea‐
tures previously available only to large enterprises.

22 | Chapter 1: Service Mesh Fundamentals

CHAPTER 2

Contrasting Technologies

How do service meshes contrast with one another? How do service
meshes contrast with other related technologies?

You might already have a healthy understanding of the set of tech‐
nology within the service mesh ecosystem, like API gateways,
ingress controllers, container orchestrators, client libraries, and so
on. But how are these technologies related to, overlapped with, or
deployed alongside service meshes? Where do service meshes fit in,
and why are there so many of them?

Let’s begin with an examination of client libraries, predecessor to the
service mesh.

Client Libraries
Client libraries (sometimes referred to as microservices frame‐
works) became very popular when microservices took a foothold in
modern application design as a means to avoid rewriting the same
logic in every service. Example frameworks include the following:

Twitter Finagle
An open source remote procedure call (RPC) library built on
Netty for engineers who want a strongly typed language on the
Java Virtual Machine (JVM). Finagle is written in Scala.

23

Net&ix Hystrix
An open source latency and fault tolerance library designed to
isolate points of access to remote systems, services, and third-
party libraries; stop cascading failure; and enable resilience.
Hystrix is written in Java.

Net&ix Ribbon
An open source Inter-Process Communication (IPCs) library
with built-in software load balancers. Ribbon is written in Java.

Go kit
An open source toolkit for building microservices (or elegant
monoliths) with gRPC as the primary messaging pattern. With
pluggable serialization and transport, Go kit is written in Go.

Other examples include Dropwizard, Spring Boot, Akka, and so on.

See the Layer5 service mesh landscape for a compre‐
hensive perspective on and characterization of all pop‐
ular client libraries.

Prior to the general availability of service meshes, developers com‐
monly turned to language-specific microservices frameworks to
uplevel the resiliency, security, and observability of their services.
The problem with client libraries is that their use means embedding
infrastructure concerns into your application code. In the presence
of a service mesh, services that embed the same client library
between themselves incorporate duplicative code. Services that
embed different client libraries or different versions of the same cli‐
ent library fall prey to inconsistency in what one framework or one
version of the same framework provides versus what another frame‐
work or framework version provides and how the libraries behave.
Use of different client libraries is most often seen in environments
with polyglot microservices.

Getting teams to update their client libraries can be an arduous pro‐
cess. When these infrastructure concerns are embedded into your
service code, you need to chase down your developers to update
and/or reconfigure these libraries, of which there might be a few in
use and used to varying degrees. Aligning on the same client library,
client library version, and client library configuration can consume

24 | Chapter 2: Contrasting Technologies

https://layer5.io/landscape

time unnecessarily. Enforcing consistency is challenging. These
frameworks couple your services with the infrastructure, as seen in
Figure 2-1.

Figure 2-1. Services architecture using client libraries coupled with
application logic

Astute developers understand that service meshes not
only alleviate many distributed systems concerns but
also greatly enable runtime application logic, further
removing the need for developers to spend time on
concerns not core to the business logic they truly need
to advance. The concept of service meshes providing
and executing application and business logic is an
advanced topic that is lightly covered in Chapter 4.

When infrastructure code is embedded in the application, different
services teams must get together to negotiate things like timeouts
and retries. A service mesh decouples not only infrastructure code
from application code, but more importantly, it decouples teams.
Service meshes are generally deployed as infrastructure that resides
outside your applications, but with their adoption mainstreaming,

Client Libraries | 25

this is changing, and their use for influencing or implementing busi‐
ness logic is on the rise.

API Gateways
How do API gateways interplay with service meshes?

This is a very common question, and the nuanced answer puzzles
many, particularly given that within the category of API gateways
lies a subspectrum. API gateways come in a few forms:

• Traditional (e.g., Kong)
• Cloud-hosted (e.g., Azure Load Balancer)
• L7 proxy used as an API gateway and microservices API gate‐

ways (e.g., Traefik, NGINX, HAProxy, or Envoy)

L7 proxies used as API gateways generally can be represented by a
collection of microservices-oriented, open source projects, which
have taken the approach of wrapping existing L7 proxies with addi‐
tional features needed for an API gateway.

NGINX
As a stable, efficient, ubiquitous L7 proxy, NGINX is commonly
found at the core of API gateways. It may be used on its own or
wrapped with additional features to facilitate container orchestrator
native integration or additional self-service functionality for devel‐
opers. For example:

• API Umbrella uses NGINX
• Kong uses NGINX
• OpenResty uses NGINX

Envoy
The Envoy project has also been used as the foundation for API
gateways:

Ambassador
With its basis in Envoy, Ambassador is an API gateway for
microservices that functions standalone or as a Kubernetes
Ingress Controller.

26 | Chapter 2: Contrasting Technologies

• Open source. Written in Python. From Ambassador Labs.
Ambassador is currently proposed to join the CNCF.

Contour
Based on Envoy and deployed as a Kubernetes Ingress Control‐
ler. Hosted in the CNCF.

• Open source. Written in Go. From Heptio. Contour joined
the CNCF in July 2020.

Enroute
Envoy Route Controller. API gateway created for Kubernetes
Ingress Controller and standalone deployments.

• Open source. Written primarily in Go. From Saaras.

Additional differences between traditional API gateways and micro‐
services API gateways revolve around which team is using the gate‐
way: operators or developers. Operators tend to focus on measuring
API calls per consumer to meter and disallow API calls when a con‐
sumer exceeds its quota. On the other hand, developers tend to
measure L7 latency, throughput, and resilience, limiting API calls
when service is not responding.

With respect to service meshes, one of the more notable lines of
delineation is that API gateways, in general, are designed for accept‐
ing traffic from outside of your organization/network and distribut‐
ing it internally. API gateways expose your services as managed
APIs, focused on transiting north-south traffic (in and out of the
service mesh). They aren’t as well suited for traffic management
within the service mesh (east-west) because they require traffic to
travel through a central proxy and add a network hop. Service
meshes are designed foremost to manage east-west traffic internal to
the service mesh.

North-south (N-S) traffic refers to traffic between cli‐
ents outside the Kubernetes cluster and services inside
the cluster, while east-west (E-W) traffic refers to traf‐
fic between services inside the Kubernetes cluster.

Given their complementary nature, API gateways and service
meshes are often found deployed in combination. Service meshes
are on a path to ultimately offering much, if not all, of the function‐
ality provided by API gateways.

API Gateways | 27

API Management
API gateways complement other components of the API manage‐
ment ecosystem, such as API marketplaces and API publishing por‐
tals—both of which are surfacing in service mesh offerings. API
management solutions provide analytics, business data, adjunct pro‐
vider services like single sign-on, and API versioning control. Many
of the API management vendors have moved API management sys‐
tems to a single point of architecture, designing their API gateways
to be implemented at the edge.

An API gateway can call downstream services via service mesh by
offloading application network functions to the service mesh. Some
API management capabilities that are oriented toward developer
engagement can overlap with service mesh management planes in
the following ways:

• Developers use a portal to discover available APIs and review
API documentation, and as a sandbox for exercising their code
against the APIs.

• API analytics for tracking KPIs, generating reports on usage and
adoption trending.

• API life-cycle management to secure APIs (allocate keys) and
promote or demote APIs.

• Monetization for tracking payment plans and enforcing quotas.

Today, there’s overlap and underlap among service mesh capabilities
and API gateways and API management systems. The overlap is
rapidly increasing as service meshes are deployed and API manage‐
ment functionality is brought into the service mesh—which makes
intuitive sense. In the presence of a service mesh, why run API gate‐
ways and API management systems separately? As service meshes
gain new capabilities, use cases (shown in Figure 2-2) will overlap
more and more.

28 | Chapter 2: Contrasting Technologies

Figure 2-2. !e underlap and overlap of API gateway and service
proxy security functions by tra$c direction

Container Orchestrators
Why is my container orchestrator not enough? What if I’m not
using containers? What do you need to continuously deliver and
operate microservices? Leaving CI and their deployment pipelines
aside for the moment, you need much of what the container orches‐
trator provides at an infrastructure level and what it doesn’t at a
services level. Table 2-1 takes a look at these capabilities.

Table 2-1. Container orchestration capabilities and focus versus service-
level needs

Core capabilitiesa Missing service-level needs
Cluster management L7 granular tra!c routing
—Host discovery —HTTP redirects
—Host health monitoring —CORS handling
Scheduling Circuit breaking
Orchestrator updates and host maintenance Chaos testing
Service discovery Canary deploys
Networking and load balancing Timeouts, retries, budgets, deadlines
Stateful services Per-request routing
Multitenant, multiregion Backpressure

Transport security (encryption)
Quota management
Protocol translation (REST, gRPC)
Policy

a Must have this to be considered a container orchestrator.

Container Orchestrators | 29

Additional key capabilities include simple application health and
performance monitoring, application deployments, and application
secrets.

Service meshes are a dedicated layer for managing service-to-service
communication, whereas container orchestrators have necessarily
had their start and focus on automating containerized infrastructure
and overcoming ephemeral infrastructure and distributed systems
problems. Applications are why we run infrastructure, though.
Applications have been and are still the North Star of our focus.
There are enough service and application-level concerns that addi‐
tional platforms/management layers are needed.

Container orchestrators like Kubernetes have different mechanisms
for routing traffic into the cluster. Ingress Controllers in Kubernetes
expose the services to networks external to the cluster. Ingresses can
terminate Secure Sockets Layer (SSL) connections, execute rewrite
rules, and support WebSockets and sometimes TCP/UDP, but they
don’t address the rest of service-level needs.

API gateways address some of these needs and are commonly
deployed on a container orchestrator as an edge proxy. Edge proxies
provide services with Layer 4 to Layer 7 management while using
the container orchestrator for reliability, availability, and scalability
of container infrastructure.

Service Meshes
In a world of many service meshes, you have a choice when it comes
to which service mesh(es) to adopt. For many of you, your organiza‐
tion will end up with more than one type of service mesh. Every
organization I’ve been in has multiple hypervisors for running VMs,
multiple container runtimes, different container orchestrators in
use, and so on. Infrastructure diversity is a reality for enterprises.
Diversity is driven by a broad set of workload requirements. Work‐
loads vary from those that are process-based to those that are event-
driven in their design. Some run on bare metal, while other
workloads execute in functions. Others represent each and every
style of deployment artifact (container, virtual machine, and so on)
in between. Different organizations need different scopes of service
mesh functionality. Consequently, different service meshes are built
with slightly divergent use cases in mind, and therefore, the archi‐
tecture and deployment models of service meshes differ between

30 | Chapter 2: Contrasting Technologies

them (see Figure 2-3). Driven by Cloud, Hybrid, On-Prem, and
Edge, service meshes are capable of enabling each of these. Micro‐
service patterns and technologies, together with the requirements of
different edge devices and their function along with ephemeral
cloud-based workloads, provide myriad opportunities for service
mesh differentiation and specialization. Cloud vendors also produce
or partner as they offer service mesh as a managed service on their
platforms.

Figure 2-3. A comparative spectrum of the di%erences among some ser‐
vice meshes, based on their individual strengths

Open source governance and corporate interests dictate a world of
multiple meshes, too. A huge range of microservice patterns drives
service mesh opportunity. Open source projects and vendors create
features to serve microservice patterns (they splinter the landscape
and function differently), and some accommodate hybrid work‐
loads. Noncontainerized workloads need to integrate and benefit
from a service mesh as well.

As the number of microservices grows, so too does the need for ser‐
vice meshes, including meshes native to specific cloud platforms.
This leads to a world where many enterprises use multiple service
mesh products, whether separately or together.

Service Mesh Abstractions
Because there are any number of service meshes available, inde‐
pendent specifications have cropped up to provide abstraction and
standardization across them. Three service mesh abstractions exist
today:

Service Mesh Performance (SMP)
This is a format for describing and capturing service mesh per‐
formance. Created by Layer5; Meshery is the canonical imple‐
mentation of this specification.

Service Meshes | 31

https://smp-spec.io

Multi-Vendor Service Mesh Interoperation (Hamlet)
This is a set of API standards for enabling service mesh federa‐
tion. Created by VMware.

Service Mesh Interface (SMI)
This is a standard interface for service meshes on Kubernetes.
Created by Microsoft; Meshery is the official SMI conformance
tool used to ensure that a cluster is properly configured and that
its behavior conforms to official SMI specifications.

Service Mesh Landscape
With a sense now of why it’s a multi-mesh world, let’s begin to char‐
acterize different service meshes. Some service meshes support non‐
containerized workloads (services running on a VM or on bare
metal), whereas some focus solely on layering on top of a container
orchestrator, most notably Kubernetes. All service meshes support
integration with service discovery systems. The subsections that fol‐
low provide a very brief survey of service mesh offerings within the
current technology landscape.

The list included here is neither exhaustive nor
intended to be a detailed comparison but rather a sim‐
ple overview of some of the available service meshes
and related components. Many service meshes have
emerged, and more will emerge after the publication of
this book. See the Layer5 service mesh landscape for a
comprehensive perspective and characterization of all
of the service meshes, service proxies, and related tools
available today. This landscape is community-
maintained and contrasts service meshes so the reader
can make the most informed decision about which ser‐
vice mesh best suits their needs.

Data Plane
Service proxies (gateways) are the elements of the data plane. How
many are present is both a factor of the number of services you’re
running and the design of the service mesh’s deployment model.
Some service mesh projects have built new proxies, while many
others have leveraged existing proxies. Envoy is a popular choice as
the data plane element.

32 | Chapter 2: Contrasting Technologies

https://oreil.ly/800Bk
https://smi-spec.io
https://layer5.io/landscape

BFE
BFE is a modern proxy written in Golang and is now hosted by
the CNCF. It supports different load balancing algorithms and
multiple protocols, including HTTP, HTTPS, SPDY, HTTP/2,
WebSocket, TLS, and FastCGI. BFE defines its own domain-
specific language in which users can configure rule and content-
based routing.

Envoy
Envoy is a modern proxy written in C++ and hosted by the
CNCF. Envoy’s ability to hot reload both its configuration and
itself (upgrade itself in place while handling connections) con‐
tributed to its initial popularity. Any number of projects have
been built on top of Envoy, including API gateways, ingress
controllers, service meshes, and managed offerings by cloud
providers. Istio, App Mesh, Kuma, Open Service Mesh, and
other service meshes (discussed in the Control Plane section)
have been built on top of Envoy.

Linkerd v2
The Linkerd2-proxy is built specifically for the service mesh
sidecar use case. Linkerd can be significantly smaller and faster
than Envoy-based service meshes. The project chose Rust as the
implementation language to be memory-safe and highly per‐
formant. This service proxy purports a sub-1ms p99 traffic
latency. Open source. Written in Rust. From Buoyant.

NGINX
Launched in September 2017, the nginMesh project deploys
NGINX as a sidecar proxy in Istio. The nginMesh project has
been set aside as of October 2018. Open source. Written primar‐
ily in C and Rust. From NGINX.

The following are a couple of early, and now antiquated, service
mesh–like projects, forming control planes around existing load
balancers:

SmartStack
Comprising two components: Nerve for health-checking and
Synapse for service discovery. Open source. From AirBnB.
Written in Ruby.

Service Meshes | 33

https://oreil.ly/2_R2b
https://github.com/nginxinc/nginmesh

Nelson
Takes advantage of integrations with Envoy, Prometheus, Vault,
and Nomad to provide Git-centric, developer-driven deploy‐
ments with automated build-and-release workflow. Open
source. From Verizon Labs. Written in Scala.

Control Plane
Control plane offerings include the following:

Consul
Announced service mesh capable intention in v1.5. Became a
full service mesh in v1.8. Consul uses Envoy as its data plane,
offering multicluster federation.

• Open and closed source. From HashiCorp. Primarily writ‐
ten in Go.

Linkerd
Linkerd is hosted by the Cloud Native Computing Foundation
(CNCF) and has undergone two major releases with significant
architectural changes and an entirely different code base used
between the two versions.

Linkerd v1
The first version of Linkerd was built on top of Twitter Finagle.
Pronounced “linker-dee,” it includes both a proxying data plane
and a control plane, Namerd (“namer-dee”), all in one package.

• Open source. Written primarily in Scala.
• Data plane can be deployed in a node proxy model (com‐

mon) or in a proxy sidecar (not common). Proven scale,
having served more than one trillion service requests.

• Supports services running within container orchestrators
and as standalone virtual or physical machines.

• Service discovery abstractions to unite multiple systems.

Linkerd v2
The second major version of Linkerd is based on a project for‐
merly known as Conduit, a Kubernetes-native and Kubernetes-
only service mesh announced as a project in December 2017. In
contrast to Istio and in learning from Linkerd v1, Linkerd v2’s
design principles revolve around a minimalist architecture and

34 | Chapter 2: Contrasting Technologies

https://oreil.ly/UBD4P
https://oreil.ly/jpzNJ

zero configuration philosophy, optimizing for streamlined
setup.

• Open Source. From Buoyant. Control plane written in Go.
Hosted by the CNCF.

• Support for gRPC, HTTP/2, and HTTP/1.x requests, plus
all TCP traffic. Currently only supports Kubernetes.

Istio
Announced as a project in May 2017, Istio is considered to be a
“second explosion after Kubernetes” given its architecture and
surface area of functional aspiration.

• Supports services running within container orchestrators
and as standalone virtual or physical machines.

• Was the first service mesh to promote the model of sup‐
porting automatic injection of service proxies as sidecars
using Kubernetes admission controller.

• Many projects have been built around Istio—commercial,
closed source offerings built around Istio include Aspen‐
Mesh, VMware Tanzu Service Mesh, and Octarine
(acquired by VMware in 2020).

• Many projects have been built within Istio. Commercial,
closed source offerings built inside Istio include Citrix Ser‐
vice Mesh. To be built “within Istio” means to offer the Istio
control plane with an alternative service proxy. Citrix Ser‐
vice Mesh displaces Envoy with CPX.
— An open source, data plane proxy, MOSN released sup‐

port for running under Istio as the control plane, while
displacing Envoy as the service proxy.

• Mesher. Layer 7 (L7) proxy that runs as a sidecar deployable
on HUAWEI Cloud Service Engine.
— Open source. Written primarily in Go. From HUAWEI.

NGINX Service Mesh
Released in September 2020, NGINX Service Mesh is a more
recent entrant into the service mesh arena. Using an NGINX
Plus augmented to interface with Kubernetes natively as its data
plane, supports ingress and egress gateways through NGINX
Plus Kubernetes Ingress Controllers. Using the Service Mesh

Service Meshes | 35

Interface (SMI) specification as its API, NGINX Service Mesh
presents its control plane as a CLI, meshctl.

• Open and closed source. From NGINX. Primarily written
in C.

Other examples include Open Service Mesh, Maesh, Kuma, and App
Mesh.

Many other service meshes are available. This list is intended to give
you a sense of the diversity of service meshes available today. See the
community-maintained, Layer5 service mesh landscape page for a
complete listing of service meshes and their details.

Management Plane
The management plane resides a level above the control plane and
offers a range of potential functions between operational patterns,
business systems integration, and enhancing application logic while
operating across different service meshes. Among its uses, a man‐
agement plane can perform workload and mesh configuration vali‐
dation—whether in preparation for onboarding a workload onto the
mesh or in continuously vetting their configuration as you update to
new versions of components running your control and data planes
or new versions of your applications. Management planes help
organizations running a service mesh get the most out their invest‐
ment. One aspect of managing service meshes includes performance
management—a function at which Meshery excels.

Meshery
The service mesh management plane for adopting, operating,
and developing on different service meshes, Meshery integrates
business processes and application logic into service meshes by
deploying custom WebAssembly (WASM) modules as filters in
Envoy-based data planes. It provides governance, policy and
performance, and configuration management of service meshes
with a visual topology for designing service mesh deployments
and managing the fine-grained traffic control of a service mesh.

• Open source. Created by Layer5. Primarily written in Go.
Proposed for adoption in the CNCF.

36 | Chapter 2: Contrasting Technologies

https://layer5.io/landscape
https://meshery.io

Service Mesh Linguistics
As the lingua franca of the cloud native ecosystem, Go is certainly
prevalent, and you might expect most service mesh projects to be
written in this language. By the nature of their task, data planes
must be highly efficient in the interception, introspection, and
rewriting of network traffic. As a data plane component, Envoy is
written in C++11 because it provides excellent performance (sur‐
prisingly, some say it provides a great developer experience). As an
emerging language (and something of a C++ competitor), Rust has
found its use within service meshes. Because of its properties
around efficiency (outperforming Go) and memory safety (when
written to be so) without garbage collection, Rust has been used for
Linkerd v2’s data plane component and for the former nginMesh’s
Mixer module (see “How to Customize an Istio Service Mesh”) and
is now being used in WebAssembly programs as data plane filters
(see the Layer 5 page, “Learn How to Write WASM Filters for
Envoy in Rust and Deploy with Consul”).

Conclusion
Client libraries (microservices frameworks) come with their set of
challenges. Service meshes move these concerns into the service
proxy and decouple them from the application code. API gateways
are the technology with the most overlap in functionality, but they
are deployed at the edge, not on every node or within every pod. As
service mesh deployments evolve, I’m seeing an erosion of sepa‐
rately deployed API gateways and in an inclusion of them within the
service mesh. Between client libraries and API gateways, service
meshes offer enough consolidation functionality to either diminish
their need or replace them entirely with a single layer of control.

Container orchestrators have so many distributed systems chal‐
lenges to address within lower-layer infrastructure that they’ve yet to
holistically address services and application-level needs. Service
meshes offer a robust set of observability, security, traffic, and
application controls beyond that of Kubernetes. Service meshes are a
necessary layer of cloud native infrastructure. There are many ser‐
vice meshes available along with service mesh specifications to
abstract and unify their functionality.

Conclusion | 37

https://www.oreilly.com/content/how-to-customize-an-istio-service-mesh
https://oreil.ly/Qn1ip
https://oreil.ly/Qn1ip

CHAPTER 3

Adoption and Evolutionary
Architectures

What practical steps can be taken to adopt a service mesh in my
enterprise?

As organizations adopt service mesh architectures, they often do so
in a piecemeal fashion, starting at the intersection of the most valua‐
ble (to them) feature and the deployment model with lowest risk as
calculated based on their operating environment and their current
operations skill set.

Piecemeal Adoption
Desperate to gain an understanding of what’s going on across their
distributed infrastructure, many organizations seek to benefit from
auto-instrumented observability first, taking baby steps in their path
to a full service mesh after initial success and operational comfort
have been achieved. Stepping into using a service mesh for its ability
to provide enhanced observability is a high-value, relatively safe first
step. First steps for others might be on a parallel path. A financial
organization, for example, might seek improved security with strong
identity (assignment of a certificate to each individual service) and
strong encryption through mutual TLS between each service, while
others might begin with an ingress proxy as their entryway to a
larger service mesh deployment.

39

Consider an organization that has hundreds of existing services run‐
ning on virtual machines (VMs) external to the service mesh that
have little to no service-to-service traffic, rather nearly all of the traf‐
fic flows from the client to the service and back to the client. This
organization can deploy a service mesh ingress (e.g., Istio Ingress
Gateway) and begin gaining granular traffic control (e.g., path
rewrites) and detailed service monitoring without immediately
deploying hundreds of service proxies (Figure 3-1).

Figure 3-1. Simple service mesh deployment primarily using ingress
tra$c control

You can start with a full service mesh deployment from the get-go,
or you can work your way up to one.

Practical Steps to Adoption
Here are two common paths:

• Wholesale adoption of a service mesh, commonly while design‐
ing a new application (a greenfield project)

• Piecemeal adoption of some components and capabilities of a
service mesh but not others, commonly while working with an
existing application (a brownfield project)

40 | Chapter 3: Adoption and Evolutionary Architectures

Let’s walk through the various forms in which the second path takes
shape, because it’s the path that most will face (that is, those who
have existing services) and is the approach most organizations take.
Incremental steps are taken in this approach. When teams are com‐
fortable with their understanding of the deployment, have gained
operational expertise, and derived substantive value, then often
another step is taken toward a full mesh. Not all teams choose to
take another step given that not all aspects of a full service mesh are
valuable to teams based on their focus or current pain points. Over
time, though, this will change—full service mesh deployments will
become ubiquitous. More than this, application developers and ser‐
vice (product) owners will begin to rely on the power of a service
mesh to empower and satisfy their requirements as well.

Engineering maturity and skill set factor into the decision of which
applications should be built from the ground up or converted with a
new service mesh architecture. A palatable suggestion is that you
don’t have to use all of the features, just those you need. Perhaps the
best approach is to mitigate risk, baby-step it, and show incremental
victories considering that some service meshes provide a path to
partial adoption. Some service meshes are easily deployed and
digestible in one motion. Even when this is the case, though, you
might find that you enable only a portion of its capabilities. Presence
of a service mesh’s capabilities is separate from whether those capa‐
bilities are actively engaged.

It’s been my experience that observability rises to the top of why
most organizations initially deploy a service mesh. Outside of met‐
rics, logs, and traces, typically you get a service dependency graph.
These graphs visually identify how much traffic is coming from one
service and going to the next. Without a visual topology or service
graph, you’re likely to feel as if you’re running blind.

Alternatively, it could be your current load balancer that is running
blind. If you’re running gRPC services, for example, and a load bal‐
ancer that is ignorant of gRPC, treating this traffic the same as any
other TCP traffic, you’ll find most service mesh proxies very helpful.
Modern service proxies will support HTTP/2 and, as such, might
provide a gRPC bridge from HTTP/1.1 to HTTP/2.

Practical Steps to Adoption | 41

Security
Though not always the case, organizations generally get to security
last. When they finally do, they might not want strong authentica‐
tion and encryption. Although the best practice is to secure every‐
thing with strongly authenticated and authorized services, some
organizations don’t implement this, which means that their micro‐
services deployments have a soft, gooey center, so to speak. Some
teams are content to secure the edge of their network but would still
like the observability and control from a service mesh.

Needless to say, I recommend that you run workloads
securely, using a service mesh to provide authentica‐
tion and authorization between all service requests.

Why don’t some organizations want to take advantage of service
mesh’s managed certificate authority? Because it is another thing to
operate? Encryption takes resources (CPU cycles) and can inject a
couple of microseconds of latency when connections are estab‐
lished. Given this, and to help with adoption, some service meshes
offer a choice as to whether or not a deployment will include a cer‐
tificate authority (CA). Maybe you consider the “gooey center” of
your mesh to be secure because there is little to no ingress/egress
traffic to/from the cluster, and access is provided only via VPN into
the cluster. Depending on workload, wallet, and sensitivity to
latency, you might find that you don’t want the overhead of running
encryption between all of your services.

Maybe you are deploying monoliths, not microservices (which don’t
need canary deploys), and are simply looking for authorization
checks only. You already have API management and don’t need any
more monitoring integrations. Maybe you use IP addresses (sub‐
nets) for security—for network security zones. A service mesh can
help you get rid of network partitions and firewalling on Layer 3
(L3) boundaries, using identities and encryption provided by the
service mesh combined with authorization checks enforced by pol‐
icy you define. Through policy that enforces authorization checks
across your monoliths, you can flatten your internal network, mak‐
ing services broadly reachable, granularly controlling which requests
are authorized. There is significantly more flexibility afforded by the

42 | Chapter 3: Adoption and Evolutionary Architectures

power of service meshes to examine and reason over details of
request traffic far beyond IP addresses and ports (Layer 3/4).

Retro"tting a Deployment
Recognize that although some greenfield projects have the luxury of
incorporating a service mesh from the start, most organizations will
have existing services (monoliths or otherwise) that they’ll need to
onboard to the mesh. Rather than a container, these services could
be running in VMs or bare-metal hosts. Fear not! Some service
meshes squarely address such environments and help with moderni‐
zation of such services, allowing organizations to renovate their
services inventory by:

• Not having to rewrite their applications
• Adapting microservices and existing services using the same

infrastructure architecture
• Facilitating adoption of new languages
• Facilitating moving to or securely connecting with services in

the cloud (or on edge)

Service meshes ease the insertion of facade services as a way of
breaking down monoliths for those organizations that adopt a stran‐
gler pattern of building services around a legacy monolith to expose
a more developer-friendly set of APIs.

Organizations are able to get observability (e.g., metrics, logs, and
traces) support as well as dependency or service graphs for every
one of their services (micro or not) as they adopt a service mesh.
With respect to tracing, the only change required within the service
is to forward certain HTTP headers. Service meshes are useful for
retrofitting uniform and ubiquitous observability tracing into exist‐
ing infrastructures with the least amount of code change.

Evolutionary Architectures
Different phases of adoption provide multiple paths to service mesh
architectures.

Retro"tting a Deployment | 43

Client Libraries
Some people consider libraries to be the first service meshes.
Figure 3-2 illustrates how the use of a library requires that your
architecture has application code either extending or using primi‐
tives of the chosen library(ies). Additionally, your architecture must
consider whether to use language-specific frameworks and (poten‐
tially) the application servers to run them.

Figure 3-2. Services architecture using client libraries coupled with
application logic

Using client libraries carries the following advantages and disadvan‐
tages:

Advantages
• Resources locally accounted for each and every service
• Self-service adoption for developers

Disadvantages
• Strong coupling is a significant drawback
• Nonuniform functionality; upgrades are challenging in large

environments (developers may need to be chased down with
pitchforks to upgrade their libraries)

44 | Chapter 3: Adoption and Evolutionary Architectures

Figure 3-3 illustrates how service meshes further the promise that
organizations implementing microservices might finally realize the
dream of using the best frameworks and language for their individ‐
ual jobs without worrying about the availability of libraries and pat‐
terns for every single platform.

Figure 3-3. Services architecture using sidecar proxies decoupled from
application logic

While testing various service mesh deployments,
installing and uninstalling the mesh, do not uninstall
by deleting the control plane first. Using Istio as an
example, deleting the istio-system namespace
without applying manifests to uninstall the mesh could
cause you some grief because you might be left with a
nonfunctional Kubernetes cluster where kubectl times
out when communicating with the Kubernetes API
server. When Istio isn’t cleaned up properly, especially
when automatic sidecar injection is enabled in your
Kubernetes cluster, proxies are left residual in the clus‐
ter and in an unmanaged state.

Evolutionary Architectures | 45

Client Libraries as a Proxyless Service Mesh
Recognizing the merits of the service mesh design, gRPC—a high-
performance, open source remote procedure call framework—has
worked to support Envoy’s xDS APIs such that gRPC can be dynam‐
ically (re)configured, as shown in Figure 3-4.

Figure 3-4. A service mesh with proxyless gRPC applications con#g‐
ured by a control plane

This carries the following advantages and disadvantages:

Advantages
• Enables xDS control planes to configure gRPC clients with ser‐

vice information such as endpoint address, health status, prior‐
ity (based on proximity and capacity), and client-side traffic
policies.

Disadvantages
• Continues to couple infrastructure logic with the application. Is

not as capable or powerful as having a full-service proxy.

This proxyless model is an evolved form of client library usage.
However, in general, use of a client library (proxyless or not) is

46 | Chapter 3: Adoption and Evolutionary Architectures

considered to be an early step on a path to a more robust and pow‐
erful service mesh model. For example, arguably the first service
mesh, Linkerd v1, was created by former Twitter engineers, built on
top of Finagle and Netty (client libraries).

Ingress or Edge Proxy
Start with load balancers (or gateways) and get scalability and availa‐
bility. And just as importantly, get the ability to facilitate upgrades
without service unavailability (depending on your application archi‐
tecture). Strangle your monolith with a facade until you’ve slowly
suffocated it entirely by incrementally routing all service traffic over
to microservices that displace the monolith’s functionality.

By starting with reverse proxying at the edge (see Figure 3-5), appli‐
cations avoid the operational overhead of exposing each service via
an independent endpoint and the tight coupling of internal business
service interfaces. Starting an implementation of modern proxying
technology at the edge provides business value in the form of
improved observability, load balancing, and dynamic routing. After
an engineering team has gained operational expertise with operating
a proxy technology at ingress, the benefits can be rolled inward
toward ultimately creating a full service mesh.

Figure 3-5. NGINX proxy as an ingress controller in Kubernetes

Service meshes are also used to enforce policy about what egress
traffic is leaving your cluster. Typically, this is accomplished in one
of a couple of ways:

Evolutionary Architectures | 47

• Registering the external services with your service mesh (so that
they can match traffic against the external destination) and con‐
figuring traffic control rules to both allow and govern external
service calls (e.g., provide timeouts on external services)

• Calling external services directly without registering them with
your service mesh but configuring your mesh to allow traffic
destined for external services (maybe for a specific IP range) to
bypass the service proxies

Using NGINX architecture has the following advantages and
disadvantages:

Advantages
• Works with existing containerized and noncontainerized serv‐

ices; additional proxies can be proliferated across the infrastruc‐
ture over time

Disadvantages
• Lacks the benefits of service-to-service visibility and central

control and backend systems integration

Router Mesh
Depicted in Figure 3-6, a router mesh performs service discovery
and provides load balancing for service-to-service communication.
All service-to-service communication flows through the router
mesh, which provides circuit breaking through active health checks
(measuring the response time for a service, and when latency/time‐
out threshold is crossed, the circuit is broken) and retries.

Given the following disadvantages, I generally recommend skipping
this model, if you can:

Advantages
• A starting point for building a brand-new microservices archi‐

tecture or for migrating from a monolith

Disadvantages
• When the number of services increases, it becomes difficult to

manage
• A crutch on your path to a better architecture that can be over‐

whelmed with a single point of failure

48 | Chapter 3: Adoption and Evolutionary Architectures

Figure 3-6. NGINX as an example router proxy deployed in
Kubernetes

Proxy per Node
Replacing the router mesh with per-host service proxies brings
greater granularity of control to your services’ deployment. Using
Linkerd (1.x) as an example (see Figure 3-7), in the per-host deploy‐
ment model, one Linkerd instance is deployed per host (whether
physical or virtual), and all application service instances on that host
route traffic through this instance. It’s not particularly well suited to
be deployed as a sidecar given its memory resource needs.

Figure 3-7. Proxy per node deployed using Linkerd (1.x)

Maesh is another, more recent example of a service mesh that has a
proxy per node service mesh architecture. Like other service meshes
that follow a proxy-per-node architecture, Maesh’s architecture has
the following advantages and disadvantages:

Advantages
• Less overhead (especially memory) for things that could be

shared across a node.

Evolutionary Architectures | 49

• Easier to scale distribution of configuration information than it
is with sidecar proxies (if you’re not using a control plane).

• This model is useful for deployments that are primarily physical
or virtual server based. Good for large monolithic applications.

Disadvantages
• Coarse support for encryption of service-to-service communi‐

cation provided by host-to-host level encryption and authenti‐
cation policies.

• Blast radius of a proxy failure includes all applications on the
node, which is essentially equivalent to losing the node itself.

• Not a transparent entity; services must be aware of its existence.

Sidecar Proxies in a Fabric Model
Although this is not a common deployment model, some organiza‐
tions evolve their deployments to this stage before moving onto
deploying a control plane—a service mesh. This model (shown in
Figure 3-8) is worth highlighting, as sidecarring is a useful pattern in
general.

Figure 3-8. Proxy sidecars (fabric model) deployed in Docker Swarm

The pattern and usefulness of sidecarring isn’t constrained to service
proxies; it is a generally applicable model of deploying components
of an application or necessary utilities into a separate container to
provide isolation and encapsulation—to separate concerns. For
example, you might deploy a logging sidecar alongside the applica‐
tion container to locally collect application logs and forward them to
a centralized syslog receiver.

50 | Chapter 3: Adoption and Evolutionary Architectures

Nearly all proxies (and microservice frameworks, for that matter)
support hot reloading of their configuration and hot upgrade of the
proxy themselves (their executable/processes). For some proxies,
however, their configuration is not able to be updated on the fly
without dropping active connections; instead, they need their pro‐
cess to be restarted in order to load new configurations. Given how
frequently containers might be rescheduled, this behavior is subopti‐
mal. Container orchestrators offer assistance for proxies that don’t
support hot reloading. The reloading and upgrading of these proxies
can be facilitated through traffic-shifting techniques that rolling
updates provide as traffic is drained and shifted from old containers
to new containers.

NGINX supports dynamic reloads and hot reloads.
Upstreams (a group of servers or services that can lis‐
ten on different ports) are dynamically reloaded
without loss of traffic. Hence, new server instances that
are attached or detached from a route can be handled
dynamically. This is the most common case in Kuber‐
netes deployments. Adding or removing new route
locations requires a hot reload that keeps the existing
workers around for as long as there is traffic passing
through them. Frequent reloads of such configurations
can exhaust the system memory in some extreme
cases. Although there is an option that can accelerate
the aging of workers, doing so will affect traffic.

As your number of sidecar proxies grows, so does the work of man‐
aging each independently. The next deployment model, sidecar
proxy, is a natural next step that brings a great deal more functional‐
ity and operational control to bear, with these considerations:

Advantages
• Granular encryption of service-to-service communication
• Can be gradually added to an existing cluster without central

coordination

Disadvantages
• Lack of central coordination; difficult to scale operationally

Evolutionary Architectures | 51

Sidecar Proxies with a Control Plane
Most service mesh projects and their deployment efforts promote
and support this deployment model foremost. In this model, you
provision a control plane (and service mesh) and get the logs and
traces out of the service proxies. A powerful aspect of a full service
mesh is that it moves away from thinking of proxies as isolated com‐
ponents and acknowledges the network they form as something val‐
uable unto itself. In essence, the control plane is what takes service
proxies and forms them into a service mesh. When you’re using the
control plane, you have a service mesh, as illustrated in Figure 3-9.

Figure 3-9. Service mesh

Service mesh implementations have evolved, allowing deployment
models to evolve in concert. A number of service meshes that
employ the sidecar pattern (shown in Figure 3-8) facilitate the auto‐
matic injection of sidecar proxies not only alongside their applica‐
tion container at runtime but into existing container/deployment
manifests, saving time on reworking manifests and facilitating retro‐
fitting of existing containerized service deployments.

A convenient model for containerized service deployments, sidecars
are commonly automatically injected at the moment they are sched‐
uled to run in the cluster. Alternatively, it’s commonplace for a ser‐
vice mesh to allow you to manually inject the sidecar proxy into
your application definition via a command-line interface utility

52 | Chapter 3: Adoption and Evolutionary Architectures

before deploying your application to the cluster. Using Kubernetes
as an example, you can automatically add sidecar proxies to appro‐
priate Kubernetes pods using a mutating webhook admission con‐
troller (in this case, code that intercepts and modifies requests to
deploy a service, inserting the service proxy prior to deployment).

Example: Manually Injecting a
Service Proxy as a Sidecar

To onboard a service to the Linkerd service mesh, the pods for that
service must be redeployed to include a data plane proxy in each
pod. The linkerd inject command accomplishes this as well as
the configuration work necessary to transparently funnel traffic
from each instance through the proxy.

Alternatively, this command can also perform the full injection
purely on the client side, by enabling the --manual flag.

This example shows Linkerd:
Inject all the resources inside a folder and
 its sub-folders.
$ linkerd inject deployment.yml | kubectl apply -f -

And this example shows Istio:
$ kubectl apply -f <(istioctl kube-inject -f
samples/sleep/sleep.yaml)

The istioctl kube-inject operation is not idempotent and
should not be repeated on the output from a previous kube-inject.
For upgrade purposes, if you’re using manual injection, I recom‐
mend that you keep the original noninjected .yaml file so that the
data plane sidecars can be updated.

A number of advantages are realized in this architectural model. Its
single greatest disadvantage is the concern of the Service Mesh Per‐
formance (SMP) standard and focus of MeshMark:

Advantages
• App-to-sidecar communication easier to secure than app-to-

node proxy
• Resources consumed for a service are attributed to that service
• Blast radius of a proxy failure limited to the sidecarred app

Evolutionary Architectures | 53

Disadvantages
• Sidecar footprint—per service overhead of running a service

proxy sidecar

Multicluster and Cross-Cluster Deployments
Some service meshes support deployment across Kubernetes clus‐
ters. Istio multicluster deployments facilitate connections between
service proxies (Envoys) running in different clusters to one Istio
control plane or multiple Istio control planes with shared compo‐
nents. Services can then communicate with the central Istio control
plane and form a service mesh network across multiple Kubernetes
clusters. Advanced configurations of Istio’s cross-cluster deployment
include gateway-to-gateway communication via 15443/tcp. These
deployments overload the Service Name Indicator (SNI) value by
populating it with the remote Istio cluster name (including service
version subset) so that when a service request is destined to a
remote gateway on 15443/tcp, “zero configuration” routing is facili‐
tated on the ingress gateway of the remote cluster. This configura‐
tion means that the identity of the client pod in the remote cluster
reaches the current cluster service proxy sidecar so that the correct
identities are available when authorization rules are applied.

Linkerd provides secure multicluster communication between
Kubernetes clusters. Linkerd’s service mirroring provides separate
failure domains to avoid a single point of failure (SPOF) cluster, a
unified security domain (identity is validated across clusters), and
support for heterogeneous networks and clusters. In keeping with
the project’s design goals, Linkerd’s cross-cluster communication is
secure by default with mutual Transport Layer Security (mTLS) and
is fully transparent to the application.

Consul supports WAN federation via mesh gateways, which requires
that mesh gateways are exposed with routable addresses so that
those addresses can front the mesh gateway pods with a single
Kubernetes service and all traffic flows between datacenters through
the mesh gateways. WAN federation is open source. Consul’s WAN
federation uses end-to-end mTLS between the source and destina‐
tion services. The gateways function like Multiprotocol Label
Switching (MPLS) Label Switch Routers (LSRs) in that they route
packets based off of the Service Name Indicator (SNI) header but do
not terminate TLS sessions.

54 | Chapter 3: Adoption and Evolutionary Architectures

Expanding the Mesh
Some service meshes support onboarding external services.
Onboarding external services refers to services running on infra‐
structure unmanaged by the mesh, like those running on separate
VMs or bare-metal servers, and bringing those onto the mesh. Most
service meshes are able to talk to multiple service discovery back‐
ends, facilitating the intermingling of meshed and external services.

Example: Using istioctl register
to Create a Service Entry

Service entries enable adding additional entries into Istio’s internal
service registry so that autodiscovered services in the mesh can
access/route to these manually specified services. A service entry
describes the properties of a service (DNS name, VIPs, ports, proto‐
cols, endpoints). These services could be external to the mesh (e.g.,
web APIs) or internal to the mesh and not part of the platform’s ser‐
vice registry (e.g., a set of VMs talking to services in Kubernetes).

Service entries are dynamically updatable; teams can change their
endpoints at will. Mesh-external entries represent services external
to the mesh. Rules to redirect and forward traffic and to define
retry, timeout, and fault injection policies are all supported for
external destinations.

Some caveats apply:

• Weighted (version-based) routing is not possible, however,
because there is no notion of multiple versions of an external
service.

• mTLS authentication is disabled, and policy enforcement is
performed on the client-side instead of on the usual server-side
of an internal service request.

Evolutionary Architectures | 55

Conclusion
In many respects, deployment of a control plane is what defines a
service mesh. Otherwise, what you have is an unmanaged collection
of service proxies.

Service meshes support onboarding existing (noncontainerized)
services onto the mesh. Service meshes can be deployed across mul‐
tiple clusters. Federation of disparate service meshes is now being
facilitated.

As technology evolves, capabilities are sometimes commoditized
and pushed down the stack. Data plane components will become
mostly commoditized. Standards like TCP/IP incorporated solu‐
tions to flow control and many other problems into the network
stack itself. This means that that piece of code still exists, but it has
been extracted from your application to the underlying networking
layer provided by your operating system.

It’s commonplace to find deployments with load balancers deployed
external to the cluster handling north-south traffic in addition to the
ingress/egress proxies that handle east-west traffic within the service
mesh. Over time, these two separate tiers of networking will look
more and more alike.

56 | Chapter 3: Adoption and Evolutionary Architectures

CHAPTER 4

Customization and Integration

How do I fit a service mesh into my existing infrastructure, opera‐
tional practices, and observability tooling?

Some service meshes are designed with simplicity as their foremost
design principle. While simple isn’t necessarily synonymous with
inflexible, there is a class of service meshes that are less extensible
than their more powerful counterparts. Maesh, Kuma, Linkerd, and
Open Service Mesh are designed with some customizability in mind;
however, they generally focus on out-of-the-box functionality and
ease of deployment. Istio is an example of a service mesh designed
with customizability in mind. Service mesh extensibility comes in
different forms: swappable sidecar proxies, telemetry and authoriza‐
tion adapters, identity providers (certificate authorities), and data
plane filters.

Service mesh sidecar proxies are the real workhorse, doing the heavy
lifting of traffic bytes and bits from one destination to the next.
Their manipulation of packets prior to invoking application logic
makes the transparent service proxies of the data plane an intriguing
point of extensibility. Service proxies are commonly designed with
extensibility in mind. While they are customizable in many different
ways (e.g., access logging, metric plug-ins, custom authentication
and authorization plug-ins, health-checking functions, rate-limiting
algorithms, and so on), let’s focus our exploration on the ways ser‐
vice proxies are customizable by way of creating custom traffic fil‐
ters (modules).

57

The Power of the Data Plane
Control planes bring much-needed element management to opera‐
tors. Data planes composed of any number of service proxies need
control planes to go about the task of applying service mesh-specific
use cases to their fleet of service proxies. Configuration manage‐
ment, telemetry collection, infrastructure-centric authorization,
identity, and so on are common functions delivered by a control
plane. However, their true source of power is drawn significantly
from the service proxy. Users commonly find themselves in need of
customizing the chain of traffic filters (modules) that service proxies
use to do much of their heaving lifting. Different technologies are
used to provide data plane extensibility and, consequently, addi‐
tional custom data plane intelligence, including:

Lua
A scripting language for execution inside a Just-In-Time com‐
piler, LuaJIT

WebAssembly (WASM)
A virtual stack machine as a compilation target for different lan‐
guages to use as an execution environment

NGINX and Lua
NGINX provides the ability to write dynamic modules that can be
loaded at runtime based on configuration files. These modules can
be unloaded by editing the configuration files and reloading
NGINX. NGINX supports embedding custom logic into dynamic
modules using Lua.

Lua is a lightweight, embeddable scripting language that supports
procedural, functional, and object-oriented programming. Lua is
dynamically typed and runs by interpreting bytecode with a register-
based virtual machine.

NGINX provides the ability to integrate dynamic Lua scripts using
the ngx_lua module. Using NGINX with ngx_lua helps you offload
logic from your services and hand their concerns off to an intelli‐
gent data plane. Leveraging NGINX’s subrequests, the ngx_lua
module allows the integration of Lua threads (or coroutines) into
the NGINX event model. Instead of passing logic to an upstream
server, the Lua script can inspect and process service traffic. ngx_lua

58 | Chapter 4: Customization and Integration

modules can be chained to be invoked at different phases of NGINX
request processing.

Envoy and WebAssembly
WebAssembly, or WASM, is an open standard that defines a binary
format for executable programs. Through WebAssembly System
Interface (WASI), it also defines interfaces for facilitating interaction
with host environments. The initial focus of these host environ‐
ments was browsers and large web applications with the intention of
securely running programs to improve performance. As an open
standard, WASM is maintained by the W3C and has been adopted
by all modern browsers. After HTML, CSS, and Javascript, WebAs‐
sembly is the fourth language to natively run in web browsers.

WASM support is coming to Envoy through the efforts of Google
and Envoy maintainers embedding Google’s open source high-
performance JavaScript and WebAssembly engine, V8, into Envoy.
Through the WebAssembly System Interface, Envoy exposes an
Application Binary Interface (ABI) to WASM modules so that they
can operate as Envoy filters. The way WASI works is straightfor‐
ward. You write your application in your favorite languages, like
Rust, C, or C++. Then, you build and compile them into a WebAs‐
sembly binary targeting the host environment. The generated binary
requires the WebAssembly runtime to provide the necessary inter‐
faces to system calls for the binary to execute. Conceptually, this is
similar to JVM. If you have a JVM installed, you can run any Java-
like languages on it. Similarly, with a runtime, you can run the
WebAssembly binary.

Comparing Lua and WebAssembly
The introduction of WASM into service meshes leaves people pon‐
dering the merits of the use of a WebAssembly runtime. A Lua run‐
time can be as small as 4 kb with LuaJIT being surprisingly fast and
only ~200 kb runtime.

From the perspective of the host software, the complexity is in the
WebAssembly loader, not the runtime. In comparing the two, how
do you measure the weight of GCC or LLVM in terms of making
optimized C or C++ faster or slower than LuaJIT?

The Power of the Data Plane | 59

The complexity involved in the WebAssembly runtime comes from
it containing arch-specific optimizers and the intermediate repre‐
sentation to machine code translation stage that would normally be
performed inside GCC or LLVM. Machine code can be generated
once and then cached on nonvolatile storage until the hash on the
WASM file changes (like the extracted contents of a tar file). Once
the machine code is generated, the result is lighter than Lua because
WASM has a comparable approach to sandboxing (which is to
make the language/bytecode unable to describe accessing resources
outside what are granted). WASM programs are compiled machine
code and need no garbage collector or JIT engine.

WebAssembly has the same flat, non-garbage-collected memory
model that things like malloc and free expect. Garbage collection
can be built into a WebAssembly application, by compiling gc to
WebAssembly and running gc inside the sandbox. Forthcoming
extensions like “opaque reference types” allow WebAssembly appli‐
cations to interact with objects managed by a garbage collector
external to the sandbox.

Envoy provides the ability to integrate additional filters in one of
two ways:

• Natively, by incorporating your custom filter into Envoy’s C++
source code and compiling a new Envoy version. The drawback
is that you need to maintain your own version of Envoy, while
the benefit is that your custom filter runs at native speed.

• Via WASM, by incorporating your custom filter as a WebAs‐
sembly binary writing in C++, Rust, AssemblyScript, or Go. The
drawback is that WASM-based filters incur some overhead,
while the benefit is that you can dynamically load and reload
WASM-based filters in Envoy at runtime.

Envoy configuration is initialized via bootstrap on startup. Envoy’s
xDS APIs allow configuration to be loaded and reloaded dynami‐
cally during runtime, as shown in Figure 4-1. Envoy configuration
has different sections (e.g., LDS, which is for configuring listeners,
and CDS, which is for configuring clusters). Each of the sections can
configure WASM plug-ins (programs).

60 | Chapter 4: Customization and Integration

Figure 4-1. How the intelligence of the service mesh management plane
and the power of the service mesh data plane combine to deliver appli‐
cation infrastructure logic

Dynamically (Re)loadable Intelligence
The fact that WASM programs can be dynamically loaded to
inspect, rewrite, and reroute packets carrying application requests
makes data planes powerful. With a management plane added to
the mix, WASM programs can include business logic considera‐
tions when filtering application requests. Business logic can be
implemented by the service mesh, including the service mesh
implementing common application infrastructure logic:

Subscription plan enforcement
Rate limiting requests based on user’s subscription plan.

Class of service
Directing requests to high-performance clusters based on user
demographics or activity.

Multivariate testing
Facilitating comparison of a high number of variables between
deployments (service versions) and users.

The Power of the Data Plane | 61

A learning resource
To try your hand at this functionality, you might try playing
with the Image Hub—a sample application written in Rust to
run on Consul for exploring WebAssembly modules used as
Envoy filters.

WebAssembly is exciting in part because of its performance charac‐
teristics, which vary based on the type of program/filter being used.
Some run between 10% to 20% overhead as compared to natively
executed code for network filtering use cases (see “The Importance
of Service Mesh Performance (SMP)” on page 68). WebAssembly
bears some resemblance to Docker given its high degree of portabil‐
ity. Like the Java Virtual Machine (JVM), WASM’s virtual stack
machine is becoming a write once, run anywhere (WORA). WASM
executables are precompiled with a healthy variety of languages sup‐
porting it as a compilation target—currently about 40 languages.

Swappable Sidecars
Functionality of the service mesh’s proxy is one of the more impor‐
tant considerations when adopting a service mesh. From the per‐
spective of a developer, much significance is given to a proxy’s
cloud-native integrations (e.g., with OpenTelemetry/OpenTracing,
Prometheus, and so on). Surprisingly, a developer may not be very
interested in a proxy’s APIs. The service mesh control plane is the
point of…well, control for managing the configuration of proxy. A
developer will, however, be interested in a management plane’s APIs.
A top item on the list of developers’ demands for proxies is protocol
support. Generally, protocol considerations can be broken into two
types:

TCP, UDP, HTTP
Network team-centric consideration in which efficiency, perfor‐
mance, offload, and load balancing algorithm support are evalu‐
ated. Support for HTTP/2 often takes top billing.

gRPC, NATS, Ka(a
A developer-centric consideration in which the top item on the
list is application-level protocols, specifically those commonly
used in modern distributed application designs.

62 | Chapter 4: Customization and Integration

https://oreil.ly/Qn1ip

The reality is that selecting the perfect proxy involves more than
protocol support. Your proxy should meet all key criteria:

• High performance and low latency
• High scalability and small memory footprint
• Deep observability at all layers of the network stack
• Programmatic configuration and ecosystem integration
• Thorough documentation to facilitate an understanding of

expected proxy behavior

Any number of service meshes have adopted Envoy as their service
proxy. Envoy is the default service proxy within Istio. Using Envoy’s
APIs, different projects have demonstrated the ability to displace
Envoy as the default service proxy with the choice of an alternative.

Standardizing Data Plane APIs
Envoy’s APIs are collectively known as xDS APIs. The Universal
Data Plane API (UDPA) working group is pursuing a set of APIs to
provide the de facto standard for L4/L7 data plane configuration
(akin to the role played by OpenFlow at L2/L3/L4 in SDN). In com‐
bination with a well-defined, stable API versioning policy, the
Envoy xDS APIs are being evolved to address service discovery,
load-balancing assignments, routing discovery, listener configura‐
tion, secret discovery, load reporting, health check delegation, etc.

In early versions of Istio, Linkerd demonstrated an integration in
which Istio was the control plane providing configuration to Link‐
erd proxies. Also, in more than a demonstration, NGINX hosted a
project known as nginMesh in which, again, Istio functioned as the
control plane while NGINX proxies ran as the data plane.

With many service proxies in the ecosystem, outside of Envoy only
two have currently demonstrated integration with Istio. Linkerd is
not currently designed as a general-purpose proxy; instead, it is
focused on being lightweight, placing extensibility as a secondary
concern by offering extensions via gRPC plug-in. Consul uses Envoy
as its proxy. Why use another service proxy? Following are some
examples:

Swappable Sidecars | 63

https://github.com/cncf/udpa
https://github.com/cncf/udpa
https://github.com/nginxinc/nginmesh

NGINX
While you won’t be able to use NGINX as a proxy to displace
Envoy (recall that the nginMesh project was set aside), based on
your operational expertise, need for a battle-tested proxy, or
integration of F5 load balancer, you might want to use NGINX.
You might be looking for caching, web application firewall
(WAF), or other functionality available in NGINX Plus, as well.
An enhanced version of NGINX Plus that interfaces natively
with Kubernetes is the service proxy used in the NGINX Service
Mesh data plane.

CPX
You might choose to deploy the Citrix Service Mesh (which is
an Istio control plane with CPX data plane) if you have existing
investment in Citrix’s Application Delivery Controllers and have
them across your diverse infrastructure, including new micro‐
services and existing monoliths.

MOSN
MOSN can deploy as an Istio data plane. You might choose to
deploy MOSN if you need to highly customize your service
proxy and are a Golang shop. MOSN supports a multiprotocol
framework, and you access private protocols with a unified
routing framework. It has a multiprocess plug-in mechanism,
which can easily extend the plug-ins of independent MOSN
processes through the plug-in framework and do some other
management, bypass, and functional module extensions.

The arrival of choice in service proxies for Istio has generated a lot
of excitement. Linkerd’s integration was created early in Istio’s 0.1.6
release. Similarly, the ability to use NGINX as a service proxy
through the nginMesh project (see Figure 4-2) was provided early in
the Istio release cycle.

You might find this article on “How to Customize an
Istio Service Mesh” and its adjoining webcast helpful in
further understanding Istio’s extensibility with respect
to swappable service proxies.

Without configuration, proxies are without instructions to perform
their tasks. Pilot is the head of the ship in an Istio mesh, so to speak,
keeping synchronized with the underlying platform by tracking and

64 | Chapter 4: Customization and Integration

https://www.oreilly.com/content/how-to-customize-an-istio-service-mesh
https://www.oreilly.com/content/how-to-customize-an-istio-service-mesh

representing its services to istio-proxy. istio-proxy contains the
proxy of choice (e.g., Envoy). Typically, the same istio-proxy
Docker image is used by Istio sidecar and Istio ingress gateway,
which contains not only the service proxy but also the Istio Pilot
agent. The Istio Pilot agent pulls configuration down from Pilot to
the service proxy at frequent intervals so that each proxy knows
where to route traffic. In this case, nginMesh’s translator agent per‐
forms the task of configuring NGINX as the istio-proxy. Pilot is
responsible for the life cycle of istio-proxy.

Figure 4-2. Example of swapping proxies—Istio and nginMesh.

Swappable Sidecars | 65

Extensible Adapters
Management planes and control planes are responsible for enforc‐
ing access control, usage, and other policies across the service mesh.
In order to do so, they collect telemetry data from service proxies.
Some service meshes gather telemetry as shown in Figure 4-3. The
service mesh control plane uses one or more telemetry adapters to
collect and pass along these signals. The control plane will use mul‐
tiple adapters either for different types of telemetry—races, logs,
metrics—or for transmitting telemetry to external monitoring
providers.

Figure 4-3. An example of a data plane proxy generating and directly
sending telemetry to the control plane. Control plane adapters are
points of extensibility, acting as an attribute processing engine, collect‐
ing, transforming, and transmitting telemetry.

Some service meshes gather telemetry through service mesh-specific
network filters residing in the service proxies in the data plane, as
shown in Figure 4-4. Here, we also see that management planes are
capable of receiving telemetry and sending control signals to affect
the behavior of the application at a business-logic level. The service

66 | Chapter 4: Customization and Integration

mesh control plane uses one or more telemetry adapters to collect
and pass along these signals. The control plane will use multiple
adapters either for different types of telemetry—traces, logs, or met‐
rics, or for transmitting telemetry to external monitoring providers.

Later versions of Istio are shifting this model of adapter extensibility
out of the control plane and into the data plane, as shown in
Figure 4-4.

Figure 4-4. Data plane performing the heavy li"ing to ensure e$cient
processing of packets and telemetry generation. “Mixerless Istio” is an
example of this model.

The default model of telemetry generation in Istio 1.5 and onward is
done through Istio proxy filters, which are compiled to WebAssem‐
bly (WASM) modules and shipped with Istio proxy. This architec‐
tural shift was primarily done for performance reasons.
Performance management is a recurring theme in consideration of
deploying and managing service meshes.

Extensible Adapters | 67

The Performance of the Data Plane
Considering the possibilities of what can be achieved when the intel‐
ligence of the management plane and the power of the data plane
are combined, service meshes pack quite a punch in terms of facili‐
tating configuration management, central identity, telemetry collec‐
tion, traffic policy, application infrastructure logic, and so on. With
this understanding, consider that the more value you try to derive
from a service mesh, the more work you will ask it to do. The more
work a service mesh does, the more its efficiency becomes a con‐
cern. While benefiting from a service mesh’s features, you may pon‐
der the question of what overhead your service mesh is incurring.
This is one of the most common questions service mesh users have.

The Importance of Service Mesh Performance (SMP)
Answering this question is anything but simple. There are so many
variables involved, and so many of those are specific to any given
environment. So how do you know if you’ve struck the right bal‐
ance between all that you’re having your service mesh do, the time
you save, the consistency and quality of traffic management you
receive, and the cost of doing so? For every load-balancing decision
made, for every rate limit enforced, for every A/B test performed,
what is the incremental overhead incurred, and what is the incre‐
mental operational savings gained? The Service Mesh Performance
specification enables its adopters to answer those very questions.

Carefully consider the quantifiable performance aspects of your ser‐
vice mesh in context of the value you are deriving from it. If you
were to acquire this same functionality outside of a service mesh,
what would it “cost” you in terms of time to implement and opera‐
tional efficiency of not having a single point of control for all that
the service mesh provides?

68 | Chapter 4: Customization and Integration

https://smp-spec.io

Conclusion
The NGINX Service Mesh and Citrix Service Mesh draw much
interest as many organizations have broad and deep operational
expertise built around these battle-tested proxies.

Service mesh management and control and data planes are highly
extensible and customizable to your environment. Data plane intel‐
ligence can be extended by executing traffic filters (modules) using
technologies like Lua and WebAssembly.

Do not underestimate the importance of data plane intelligence.
More and more, developers can shed application logic responsibili‐
ties to the data plane, which means that they can deliver on core
business logic more readily, and it means that operators and service/
product owners are empowered with more control over application
logic by virtue of simply configuring the service mesh.

Conclusion | 69

CHAPTER 5

Conclusion

In many respects, the advent of cloud native is marked by the intro‐
duction of Docker. The popularization of containers brought the
need for orchestrators. In turn, containers and orchestrators, cou‐
pled with the popularity of microservice architecture for their speed
of development, smaller surface area to reason over, and decoupling
of development teams, lead to service sprawl. The ability to run a
number of distributed services brought the need for empowering
developers, operators, and service owners with a service mesh.

Service meshes are one layer of your infrastructure and don’t bring
all that you need. They do give you the ability to bridge the divide
between your infrastructure and your application in ways most peo‐
ple have not previously seen, however. Service meshes and where
they layer into the infrastructure makes them ripe with possibility
beyond what they are being used for today. We will see growth in the
following areas of service mesh usage and see how they change how
developers write applications and how product owners manage their
services:

• Refine developer experiences by:
— Offering distributed debugging.
— Allowing developers to skip past building in many user/

tenancy segregation considerations and instead rely on the
service mesh to provide enforcement based on configura‐
tion, not application code.

71

• Provide compelling topology and dependency graphs that allow
you to not only visualize the service mesh and its workloads but
design them as well.

• Participate in application life-cycle management but would bene‐
fit from shifting left to incorporate:
— Deeper automated canary support with integration into con‐

tinuous integration systems, which would improve the
deployment pipelines of many software projects.

— Automatic API documentation, perhaps, integrating with
toolkits like Swagger or ReadMe.io.

— API function and interface discovery.
• Participate in service and product management by enabling ser‐

vice owners to offload any number of examples of application
logic to the service mesh, allowing developers to hand off
“application infrastructure logic” to the layer just below the
application—Layer 5:
— Perform A/B testing directly with service users without the

need for developer or operator intervention.
— Control service pricing based on the accounting of service

request traffic in the context that the tenant/user is making
these requests.

— Forgo requesting specific application logic changes from the
development team and instead deploy a network traffic filter
to reason over and control user and service behavior.

• Deeper observability to move beyond distributed tracing alone
and into full application performance monitoring leverage deep
packet inspection for business layer insights.

• Multitenancy to allow multiple control planes running on the
same platform.

• Multicluster and cross-cluster such that each certificate authority
shares the same root certificate and workloads can authenticate
each other across clusters within the same mesh.

• Cross-mesh to allow interoperability between heterogeneous
types of service meshes.

• Improve on the integration of performance management tools
like Meshery to identify ideal mesh resiliency con#gurations by
facilitating load testing of your services’ response times so that

72 | Chapter 5: Conclusion

you can tune queue sizes, timeouts, retry budgets, and so on,
accordingly. Meshes provide fault and delay injection. What are
appropriate deadlines for your services under different loads?

• Advanced circuit breaking with fallback paths, identifying alter‐
nate services to respond as opposed to 503 Service Unavailable
errors.

• Pluggable certi#cate authorities component so that external CAs
can be integrated.

Adopting a Service Mesh
There are many service meshes to choose from, as well as a variety
of deployment models. Which is right for you and your organization
depends on where you are in your maturity curve (cloud-native skill
set), number of services, underlying infrastructure, and how centric
technology is to your business.

So, should you deploy a service mesh? More and more, the answer is
“yes.” Service meshes are quickly becoming a ubiquitous layer in
modern infrastructures. Table 5-1 shows the factors to consider.

Table 5-1. Factors in considering how strongly you need a service mesh
Concern Begin considering a

service mesh
Strongly consider a
service mesh

Consider that..

Service
communication

Low interservice
communication.

High interservice
communication.

The higher the volume of
requests to internal and
external services, the more
insight and control you
will need and the higher
the return on investment
your service mesh will
deliver.

Observability Edge focus: metrics and
usage are for response
time to clients and
request failure rates.

Uniform and
ubiquitous:
observability is key for
understanding service
behavior.

You can bring much
insight immediately with
little e"ort.

Adopting a Service Mesh | 73

Concern Begin considering a
service mesh

Strongly consider a
service mesh

Consider that..

Perspective from
which you think
of your APIs

Strong separation of
external and internal
users. Focused on
external API experience.
APIs are used primarily
for client-facing
interaction. APIs are for
clients only.

Equal and
undi"erentiated
experience for internal
and external users. APIs
are treated as a
product; APIs are how
your application
exposes its capabilities.

Service meshes are
infusing API gateway and
API management
functionality. Deploy a
mesh early to have your
architecture ready for
scaling.

Security model Security at perimeter.
Subnet zoning
(#rewalling). Trusted
internal networks.

Zero-trust mindset.
authN and authZ
between all services.
Encryption between all
services.

The security characteristics
are desirable qualities of
any deployment. Apply
defense-in-depth. Why not
pull these into a single
layer of control?

of services A couple of services. A few services or more. Deploy a service mesh
early. Doing so lowers risk
and a"ords you time to
become con#dent with the
operations of a service
mesh.

Service reliability Either don’t need or are
willing to hand code or
bring in other
infrastructure to
provide resiliency
guarantees.

Need strong controls
over the resiliency
properties of your
services and to
granularly control
ingress, between, and
egress service request
tra!c.

Resilient infrastructure and
highly available services
are ideal in any
environment. Let the
service mesh do the heavy
lifting for you.

I recommend starting small, with the lowest-risk deployment
model. I consider the lowest-risk deployment model to be one
focused on observability, primarily because gathering additional
telemetric signals is more about observing service and system
behavior than it is about augmenting them. As you roll out your ser‐
vice mesh, understand that failures in the environment can misplace
blame on the service mesh. Understand what service meshes do and
what they don’t. Prepare for failures by removing a culture of blame.
Learn from failures and outages. Familiarize yourself well with ser‐
vice mesh troubleshooting tools and built-in diagnostics of your ser‐
vice mesh, for example:

74 | Chapter 5: Conclusion

• Use Meshery to identify antipatterns and also to analyze the
state and configuration of your service mesh against known best
practices.

• Inspect service request headers with your service mesh and
annotate when requests fail to help you identify whether the
failure is in your workloads or the service mesh.

Show immediate value. Observability signals are a great way of
doing so, and Linkerd makes this simple:

$ linkerd stat deploy --from web
NAMESPACE NAME MESHED SUCCESS RPS LATENCY_P50 _P95 _P99
emojivoto emoji 1/1 100.00% 2.0rps 1ms 2ms 2ms
emojivoto voting 1/1 72.88% 1.0rps 1ms 1ms 1ms

When choosing a path, I recommend embracing an open platform
that is adaptable to existing infrastructure investments and the tech‐
nology expertise you already have. Choose a project that embraces
open standards and is API-driven to allow for automated configura‐
tion. Given that not all open source software is created equally, con‐
sider its community, including project governance, number and
diversity of maintainers, and velocity. Recognize your comfort in
having or not having a support contract. Understand where OSS
functionality stops and “enterprise” begins. Embrace diversity in
your technology stack so that you’re open to selecting best-fit tech‐
nology and can experiment when needed. Realize the democratiza‐
tion of technology selection afforded by microservices and the high
degree of control afforded by a service mesh. Don’t leave value on
the service mesh table when you can expect more from your infra‐
structure. Account for whether your organization has different skill
sets with potentially differing subcultures. Understand that technol‐
ogy evolves and will change. Ensure you have the ability to change
as all architectures are in a state of evolution.

What if you only have one service? A lightweight service mesh with
an ingress gateway and a service proxy can provide you with a high
degree of control that you otherwise will have to deploy separate
infrastructure for. Consider how likely it is that your deployment
will grow beyond a single service. Having a service mesh present
from the start means that you can avoid embedded infrastructure
logic into your application code from the very beginning. It also
means that you don’t have to tear down other temporary infrastruc‐
ture during your deployment in the interim until you arrive at a

Adopting a Service Mesh | 75

more painful inflection point when you inevitably deploy a service
mesh.

Generally speaking, my advice is to deploy a service mesh even in
environments with only a couple of services and with only a few
engineers and whether you are working on a homogenous applica‐
tion stack or not. Especially deploy a service mesh if you are not
confident in the observability, not confident in the reliability, and
not confident in the security of your application. Understand that
the consideration of the size of your organization is orthogonal to
the consideration of your need for a service mesh. Whether you run
a service mesh yourself or seek a managed service solution is a con‐
sideration more heavily weighted by the size of your organization.
Expertise and experience with successfully adopting open source
infrastructure projects is another example of an orthogonal consid‐
eration as to whether you and your workloads will benefit from a
service mesh. Again, this is more of a factor of whether to deploy
and run a service mesh yourself or seek assistance from a vendor.

The fifth layer of distributed systems is here. There are plenty of
options to choose from. It’s time to expect more from your infra‐
structure. Take the third step in your cloud-native journey and
deploy a service mesh. The untapped power of the service mesh
might surprise you.

76 | Chapter 5: Conclusion

About the Author
Lee Calcote is the founder and CEO of Layer5, where the commu‐
nity helps organizations harness the value of service meshes as a
maintainer of Meshery, Service Mesh Performance (SMP), and Ser‐
vice Mesh Interface (SMI). Previously, Calcote stewarded technol‐
ogy strategy and innovation across SolarWinds as head of CTO
technology initiatives. He led software-defined data center engineer‐
ing at Seagate, delivering predictive analytics and modern systems
management. Calcote held various leadership positions at Cisco,
where he created Cisco’s cloud management platform and pioneered
software-defined network orchestration and autonomic remote
management services.

In addition to his role at Layer5, Calcote serves in various industry
bodies chairing the Cloud Native Computing Foundation (CNCF)
SIG Network, and formerly, in the Distributed Management Task
Foundation (DMTF), delivering Redfish 1.0, and in the Center for
Internet Security (CIS), delivering the Docker Benchmark 1.0.

He serves on Cisco’s advisory board, and formerly advised startups
Twistlock and Octarine, acquired by Palo Alto Networks and
VMware, respectively. As a Docker Captain and Cloud Native
Ambassador, he is a frequent speaker in the cloud native ecosystem.
Calcote is the coauthor of Istio: Up and Running and the forthcom‐
ing Service Mesh Patterns (both O’Reilly), in addition to titles with
other publishers. He holds a bachelor’s degree in computer science,
a master’s degree in business administration, and retains a list of
industry certifications.

https://learning.oreilly.com/library/view/istio-up-and/9781492043775

	Copyright
	Table of Contents
	Preface
	What You Will Learn
	Who This Report Is For
	Acknowledgments

	Chapter 1. Service Mesh Fundamentals
	Operating Many Services
	What Is a Service Mesh?
	Architecture and Components

	Why Do I Need One?
	Value of a Service Mesh
	Decoupling at Layer 5

	Conclusion

	Chapter 2. Contrasting Technologies
	Client Libraries
	API Gateways
	NGINX
	Envoy
	API Management

	Container Orchestrators
	Service Meshes
	Service Mesh Abstractions
	Service Mesh Landscape
	Data Plane
	Control Plane
	Management Plane

	Conclusion

	Chapter 3. Adoption and Evolutionary Architectures
	Piecemeal Adoption
	Practical Steps to Adoption
	Security

	Retrofitting a Deployment
	Evolutionary Architectures
	Client Libraries
	Client Libraries as a Proxyless Service Mesh
	Ingress or Edge Proxy
	Router Mesh
	Proxy per Node
	Sidecar Proxies in a Fabric Model
	Sidecar Proxies with a Control Plane
	Multicluster and Cross-Cluster Deployments
	Expanding the Mesh

	Conclusion

	Chapter 4. Customization and Integration
	The Power of the Data Plane
	NGINX and Lua
	Envoy and WebAssembly

	Swappable Sidecars
	Extensible Adapters
	The Performance of the Data Plane
	Conclusion

	Chapter 5. Conclusion
	Adopting a Service Mesh

	About the Author

